Ribosome collisions trigger cis-acting feedback inhibition of translation initiation

  1. Szymon Juszkiewicz
  2. Greg Slodkowicz
  3. Zhewang Lin
  4. Paula Freire-Pritchett
  5. Sew-Yeu Peak-Chew
  6. Ramanujan S Hegde  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. MRC-Laboratory of Molecular Biology, United Kingdom

Abstract

Translation of aberrant mRNAs can cause ribosomes to stall, leading to collisions with trailing ribosomes. Collided ribosomes are specifically recognized by ZNF598 to initiate protein and mRNA quality control pathways. Here we found using quantitative proteomics of collided ribosomes that EDF1 is a ZNF598-independent sensor of ribosome collisions. EDF1 stabilizes GIGYF2 at collisions to inhibit translation initiation in cis via 4EHP. The GIGYF2 axis acts independently of the ZNF598 axis, but each pathway's output is more pronounced without the other. We propose that the widely conserved and highly abundant EDF1 monitors the transcriptome for excessive ribosome density, then triggers a GIGYF2-mediated response to locally and temporarily reduce ribosome loading. Only when collisions persist is translation abandoned to initiate ZNF598-dependent quality control. This tiered response to ribosome collisions would allow cells to dynamically tune translation rates while ensuring fidelity of the resulting protein products.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data have been provided for Figure 1.

The following data sets were generated

Article and author information

Author details

  1. Szymon Juszkiewicz

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3361-7264
  2. Greg Slodkowicz

    Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6918-0386
  3. Zhewang Lin

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Paula Freire-Pritchett

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Sew-Yeu Peak-Chew

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ramanujan S Hegde

    Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    rhegde@mrc-lmb.cam.ac.uk
    Competing interests
    Ramanujan S Hegde, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8338-852X

Funding

Medical Research Council (MC_UP_A022_1007)

  • Ramanujan S Hegde

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Topisirovic, Jewish General Hospital, Canada

Version history

  1. Received: June 15, 2020
  2. Accepted: July 10, 2020
  3. Accepted Manuscript published: July 13, 2020 (version 1)
  4. Version of Record published: July 24, 2020 (version 2)

Copyright

© 2020, Juszkiewicz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,421
    views
  • 1,107
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Szymon Juszkiewicz
  2. Greg Slodkowicz
  3. Zhewang Lin
  4. Paula Freire-Pritchett
  5. Sew-Yeu Peak-Chew
  6. Ramanujan S Hegde
(2020)
Ribosome collisions trigger cis-acting feedback inhibition of translation initiation
eLife 9:e60038.
https://doi.org/10.7554/eLife.60038

Share this article

https://doi.org/10.7554/eLife.60038

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.