Abstract

The microtubule-associated protein, doublecortin-like kinase 1 (DCLK1), is highly expressed in a range of cancers and is a prominent therapeutic target for kinase inhibitors. The physiological roles of DCLK1 kinase activity and how it is regulated remain elusive. Here, we analyze the role of mammalian DCLK1 kinase activity in regulating microtubule binding. We find that DCLK1 autophosphorylates a residue within its C-terminal tail to restrict its kinase activity and prevent aberrant hyperphosphorylation within its microtubule-binding domain. Removal of the C-terminal tail or mutation of this residue causes an increase in phosphorylation within the doublecortin domains, which abolishes microtubule binding. Therefore, autophosphorylation at specific sites within DCLK1 have diametric effects on the molecule's association with microtubules. Our results suggest a mechanism by which DCLK1 modulates its kinase activity to tune its microtubule-binding affinity. These results provide molecular insights for future therapeutic efforts related to DCLK1's role in cancer development and progression.

Data availability

All data generated or analyzed during this study are included in the manuscript or as source files. Data has been deposited in Dryad Digital Repository and can be currently accessed at https://doi.org/10.25338/B8T634.

The following data sets were generated
    1. Ori-McKenney KM
    (2021) Source Data
    https://creativecommons.org/publicdomain/zero/1.0/.

Article and author information

Author details

  1. Regina L Agulto

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  2. Melissa M Rogers

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  3. Tracy C Tan

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  4. Amrita Ramkumar

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  5. Ashlyn M Downing

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  6. Hannah Bodin

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  7. Julia Castro

    University of California, Davis, United States
    Competing interests
    No competing interests declared.
  8. Dan W Nowakowski

    N/A, N Molecular Systems, Inc., Palo Alto, United States
    Competing interests
    No competing interests declared.
  9. Kassandra M Ori-McKenney

    University of California, Davis, United States
    For correspondence
    kmorimckenney@ucdavis.edu
    Competing interests
    Kassandra M Ori-McKenney, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2051-2495

Funding

National Institutes of Health (1R35GM133688)

  • Kassandra M Ori-McKenney

Pew Charitable Trusts (A19-0406)

  • Kassandra M Ori-McKenney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Agulto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,351
    views
  • 190
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Regina L Agulto
  2. Melissa M Rogers
  3. Tracy C Tan
  4. Amrita Ramkumar
  5. Ashlyn M Downing
  6. Hannah Bodin
  7. Julia Castro
  8. Dan W Nowakowski
  9. Kassandra M Ori-McKenney
(2021)
Autoregulatory control of microtubule binding in doublecortin-like kinase 1
eLife 10:e60126.
https://doi.org/10.7554/eLife.60126

Share this article

https://doi.org/10.7554/eLife.60126

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.