1. Cancer Biology
Download icon

eIF4E S209 phosphorylation licenses Myc-and stress-driven oncogenesis

  1. Hang Ruan
  2. Xiangyun Li
  3. Xiang Xu
  4. Brian J Leibowitz
  5. Jingshan Tong
  6. Lujia Chen
  7. Luoquan Ao
  8. Wei Xing
  9. Jianhua Luo
  10. Yanping Yu
  11. Robert E Schoen
  12. Nahum Sonenberg
  13. Xinghua Lu
  14. Lin Zhang
  15. Jian Yu  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Daping Hospital, China
  3. McGill University, Canada
Research Article
  • Cited 3
  • Views 1,266
  • Annotations
Cite this article as: eLife 2020;9:e60151 doi: 10.7554/eLife.60151

Abstract

To better understand a role of eIF4E S209 in oncogenic translation, we generated EIF4ES209A/+ heterozygous knockin (4EKI) HCT 116 human colorectal cancer (CRC) cells. 4EKI had little on total eIF4E levels, cap binding or global translation, while markedly reduced HCT 116 cell growth in spheroids and mice, and CRC organoid growth. 4EKI strongly inhibited Myc and ATF4 translation, the integrated Stress Response (ISR)-dependent glutamine metabolic signature, AKT activation and proliferation in vivo. 4EKI inhibited polyposis in ApcMin/+ mice by suppressing Myc protein and AKT activation. Furthermore, p-eIF4E was highly elevated in CRC precursor lesions in mouse and human. p-eIF4E cooperated with mutant KRAS to promote Myc and ISR-dependent glutamine addiction in various CRC cell lines, characterized by increased cell death, transcriptomic heterogeneity and immune suppression upon deprivation. These findings demonstrate a critical role of eIF4E S209-dependent translation in Myc and stress-driven oncogenesis and as a potential therapeutic vulnerability.

Data availability

Microarray data is deposited in Dryad under doi:10.5061/dryad.tb2rbnzxm.All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated
    1. YU
    2. Jian
    (2020) Microarray data
    Dryad Digital Repository, doi:10.5061/dryad.tb2rbnzxm.

Article and author information

Author details

  1. Hang Ruan

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  2. Xiangyun Li

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Xiang Xu

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  4. Brian J Leibowitz

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Jingshan Tong

    Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Lujia Chen

    Medical Informatics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  7. Luoquan Ao

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  8. Wei Xing

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  9. Jianhua Luo

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  10. Yanping Yu

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  11. Robert E Schoen

    Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  12. Nahum Sonenberg

    Goodman Cancer Research Center, McGill University, Montreal, Canada
    Competing interests
    Nahum Sonenberg, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4707-8759
  13. Xinghua Lu

    Biomedical Informatics, University of Pittsburgh, Pittsbrugh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8599-2269
  14. Lin Zhang

    Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  15. Jian Yu

    Pathology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    yuj2@upmc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4021-1000

Funding

NIH (R01CA215481)

  • Jian Yu

NIH (R01CA172136)

  • Lin Zhang

NIH (R01CA203028)

  • Lin Zhang

NIH (R01CA236271)

  • Lin Zhang

NIH (R01LM012011)

  • Xinghua Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (# 19085635 and 18063020) of the University of Pittsburgh. All animal experiments were approved by the University of Pittsburgh Institutional Animal Care and Use Committee under Animal welfare assurance number A-3187-01. No surgery or invasive procedure was performed and every effort was made to minimize suffering with humane sacrifice.

Reviewing Editor

  1. Wafik S El-Deiry, Brown University, United States

Publication history

  1. Received: June 17, 2020
  2. Accepted: October 31, 2020
  3. Accepted Manuscript published: November 2, 2020 (version 1)
  4. Version of Record published: November 13, 2020 (version 2)

Copyright

© 2020, Ruan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,266
    Page views
  • 224
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Neuroscience
    Susu Pan et al.
    Research Article

    Emerging evidence suggests that the nervous system is involved in tumor development in the periphery, however, the role of central nervous system remains largely unknown. Here, by combining genetic, chemogenetic, pharmacological and electrophysiological approaches, we show that hypothalamic oxytocin (Oxt)-producing neurons modulate colitis-associated cancer (CAC) progression in mice. Depletion or activation of Oxt neurons could augment or suppress CAC progression. Importantly, brain treatment with celastrol, a pentacyclic triterpenoid, excites Oxt neurons and inhibits CAC progression, and this anti-tumor effect was significantly attenuated in Oxt neuron-lesioned mice. Furthermore, brain treatment with celastrol suppresses sympathetic neuronal activity in the celiac-superior mesenteric ganglion (CG-SMG), and activation of β2 adrenergic receptor abolishes the anti-tumor effect of Oxt neuron activation or centrally administered celastrol. Taken together, these findings demonstrate that hypothalamic Oxt neurons regulate CAC progression by modulating the neuronal activity in the CG-SMG. Stimulation of Oxt neurons using chemicals, eg. celastrol, might be a novel strategy for colorectal cancer treatment.

    1. Cancer Biology
    2. Cell Biology
    Lauren K Williams et al.
    Research Article Updated

    The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.