Abstract

To better understand a role of eIF4E S209 in oncogenic translation, we generated EIF4ES209A/+ heterozygous knockin (4EKI) HCT 116 human colorectal cancer (CRC) cells. 4EKI had little on total eIF4E levels, cap binding or global translation, while markedly reduced HCT 116 cell growth in spheroids and mice, and CRC organoid growth. 4EKI strongly inhibited Myc and ATF4 translation, the integrated Stress Response (ISR)-dependent glutamine metabolic signature, AKT activation and proliferation in vivo. 4EKI inhibited polyposis in ApcMin/+ mice by suppressing Myc protein and AKT activation. Furthermore, p-eIF4E was highly elevated in CRC precursor lesions in mouse and human. p-eIF4E cooperated with mutant KRAS to promote Myc and ISR-dependent glutamine addiction in various CRC cell lines, characterized by increased cell death, transcriptomic heterogeneity and immune suppression upon deprivation. These findings demonstrate a critical role of eIF4E S209-dependent translation in Myc and stress-driven oncogenesis and as a potential therapeutic vulnerability.

Data availability

Microarray data is deposited in Dryad under doi:10.5061/dryad.tb2rbnzxm.All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated
    1. YU
    2. Jian
    (2020) Microarray data
    Dryad Digital Repository, doi:10.5061/dryad.tb2rbnzxm.

Article and author information

Author details

  1. Hang Ruan

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  2. Xiangyun Li

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Xiang Xu

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  4. Brian J Leibowitz

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Jingshan Tong

    Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Lujia Chen

    Medical Informatics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  7. Luoquan Ao

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  8. Wei Xing

    Stem Cell and Regenerative Medicine, Daping Hospital, Chongqing, China
    Competing interests
    No competing interests declared.
  9. Jianhua Luo

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  10. Yanping Yu

    Pathology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  11. Robert E Schoen

    Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  12. Nahum Sonenberg

    Goodman Cancer Research Center, McGill University, Montreal, Canada
    Competing interests
    Nahum Sonenberg, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4707-8759
  13. Xinghua Lu

    Biomedical Informatics, University of Pittsburgh, Pittsbrugh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8599-2269
  14. Lin Zhang

    Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  15. Jian Yu

    Pathology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    yuj2@upmc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4021-1000

Funding

NIH (R01CA215481)

  • Jian Yu

NIH (R01CA172136)

  • Lin Zhang

NIH (R01CA203028)

  • Lin Zhang

NIH (R01CA236271)

  • Lin Zhang

NIH (R01LM012011)

  • Xinghua Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wafik S El-Deiry, Brown University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (# 19085635 and 18063020) of the University of Pittsburgh. All animal experiments were approved by the University of Pittsburgh Institutional Animal Care and Use Committee under Animal welfare assurance number A-3187-01. No surgery or invasive procedure was performed and every effort was made to minimize suffering with humane sacrifice.

Version history

  1. Received: June 17, 2020
  2. Accepted: October 31, 2020
  3. Accepted Manuscript published: November 2, 2020 (version 1)
  4. Version of Record published: November 13, 2020 (version 2)

Copyright

© 2020, Ruan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,218
    views
  • 340
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hang Ruan
  2. Xiangyun Li
  3. Xiang Xu
  4. Brian J Leibowitz
  5. Jingshan Tong
  6. Lujia Chen
  7. Luoquan Ao
  8. Wei Xing
  9. Jianhua Luo
  10. Yanping Yu
  11. Robert E Schoen
  12. Nahum Sonenberg
  13. Xinghua Lu
  14. Lin Zhang
  15. Jian Yu
(2020)
eIF4E S209 phosphorylation licenses Myc-and stress-driven oncogenesis
eLife 9:e60151.
https://doi.org/10.7554/eLife.60151

Share this article

https://doi.org/10.7554/eLife.60151

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.