3D Visualization of Macromolecule Synthesis

  1. Timothy J Duerr
  2. Ester Comellas
  3. Eun Kyung Jeon
  4. Johanna E Farkas
  5. Marylou Joetzjer
  6. Julien Garnier
  7. Sandra J Shefelbine
  8. James R Monaghan  Is a corresponding author
  1. Northeastern University, United States
  2. Universitat Politècnica de Catalunya (UPC), Spain
  3. University of Technology of Compiègne, France

Abstract

Measuring nascent macromolecular synthesis in vivo is key to understanding how cells and tissues progress through development and respond to external cues. Here, we perform in vivo injection of alkyne- or azide-modified analogs of thymidine, uridine, methionine, and glucosamine to label nascent synthesis of DNA, RNA, protein, and glycosylation. Three-dimensional volumetric imaging of nascent macromolecule synthesis was performed in axolotl salamander tissue using whole mount click chemistry-based fluorescent staining followed by light sheet fluorescent microscopy. We also developed an image processing pipeline for segmentation and classification of morphological regions of interest and individual cells, and we apply this pipeline to the regenerating humerus. We demonstrate our approach is sensitive to biological perturbations by measuring changes in DNA synthesis after limb denervation. This method provides a powerful means to quantitatively interrogate macromolecule synthesis in heterogenous tissues at the organ, cellular, and molecular levels of organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Timothy J Duerr

    Department of Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4945-0294
  2. Ester Comellas

    Department of Mathematics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Eun Kyung Jeon

    Department of Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Johanna E Farkas

    Department of Biology, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6540-7870
  5. Marylou Joetzjer

    Department of Biological Engineering, University of Technology of Compiègne, Compiègne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Julien Garnier

    Department of Biological Engineering, University of Technology of Compiègne, Compiègne, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Sandra J Shefelbine

    Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James R Monaghan

    Biology, Northeastern University, Boston, United States
    For correspondence
    j.monaghan@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6689-6108

Funding

National Science Foundation (1727518)

  • Sandra J Shefelbine

Northeastern University Matz Scholarship

  • Eun Kyung Jeon

Northeastern University Undergraduate Research Fellowship

  • Eun Kyung Jeon

National Science Foundation (1656429)

  • James R Monaghan

National Science Foundation (1558017)

  • James R Monaghan

European Commission MSCA-GF (841047 CompLimb)

  • Ester Comellas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatiana Sandoval-Guzman

Ethics

Animal experimentation: Axolotls (Ambystoma mexicanum: d/d RRID Catalog #101L) were either bred in captivity at Northeastern University or purchased from the Ambystoma Genetic Stock Center at the University of Kentucky. Experiments were performed in accordance with Northeastern University Institutional Animal Care and Use Committee. Animals were grown to 4-6cm (Mean 5.3cm, SD 0.36) and 1-1.5g (Mean 1.3g, SD 0.19g) for use in all studies. For all experiments, animals were anesthetized by treatment of 0.01% benzocaine until visually immobilized.

Version history

  1. Received: July 6, 2020
  2. Accepted: October 13, 2020
  3. Accepted Manuscript published: October 14, 2020 (version 1)
  4. Version of Record published: November 16, 2020 (version 2)

Copyright

© 2020, Duerr et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,299
    Page views
  • 236
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy J Duerr
  2. Ester Comellas
  3. Eun Kyung Jeon
  4. Johanna E Farkas
  5. Marylou Joetzjer
  6. Julien Garnier
  7. Sandra J Shefelbine
  8. James R Monaghan
(2020)
3D Visualization of Macromolecule Synthesis
eLife 9:e60354.
https://doi.org/10.7554/eLife.60354

Share this article

https://doi.org/10.7554/eLife.60354

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.