Metabolic control of cellular immune-competency by odors in Drosophila

  1. Sukanya Madhwal
  2. Mingyu Shin
  3. Ankita Kapoor
  4. Manisha Goyal
  5. Manish K Joshi
  6. Pirzada Mujeeb Ur Rehman
  7. Kavan Gor
  8. Jiwon Shim  Is a corresponding author
  9. Tina Mukherjee  Is a corresponding author
  1. inStem, India
  2. Hanyang University, Republic of Korea
  3. Institut de Biologie, Aix Marseille Université, CNRS, France
  4. European Molecular Biology Laboratory, Germany

Abstract

Studies in different animal model systems have revealed the impact of odors on immune cells, however, any understanding on why and how odors control cellular immunity remained unclear. We find that Drosophila employ an olfactory-immune cross-talk to tune a specific cell type, the lamellocytes, from hematopoietic-progenitor cells. We show that neuronally released GABA derived upon olfactory stimulation, is utilized by blood-progenitor cells as a metabolite and through its catabolism, these cells stabilize Sima/HIFα protein. Sima capacitates blood-progenitor cells with the ability to initiate lamellocyte differentiation. This systemic axis becomes relevant for larvae dwelling in wasp-infested environments where chances of infection are high. By co-opting the olfactory route, the pre-conditioned animals elevate their systemic GABA levels leading to the up-regulation of blood-progenitor cell Sima expression. This elevates their immune-potential and primes them to respond rapidly when infected with parasitic wasps. The present work highlights the importance of the olfaction in immunity and shows how odor detection during animal development is utilized to establish a long-range axis in the control of blood-progenitor competency and immune-priming.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5 and Extended Data Figure 1-10.

Article and author information

Author details

  1. Sukanya Madhwal

    Regulation of Cell Fate, inStem, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Mingyu Shin

    Hanyang University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Ankita Kapoor

    Regulation of Cell Fate, inStem, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Manisha Goyal

    Regulation of Cell Fate, inStem, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Manish K Joshi

    Développement de Marseille (IBDM), Institut de Biologie, Aix Marseille Université, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Pirzada Mujeeb Ur Rehman

    Regulation of Cell Fate, inStem, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Kavan Gor

    SCB unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jiwon Shim

    Hanyang University, Seoul, Republic of Korea
    For correspondence
    jshim@hanyang.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2409-1130
  9. Tina Mukherjee

    Regulation of Cell Fate, inStem, Bangalore, India
    For correspondence
    tinam@instem.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3776-5536

Funding

Department of Biotechnology, Ministry of Science and Technology, India (DBT/PR13446/COE/34/30/2015)

  • Tina Mukherjee

Department of Science and Technology, Ministry of Science and Technology, India (DST/ECR/2015/000390)

  • Tina Mukherjee

Department of Biotechnology, Ministry of Science and Technology, India (Ramalingaswami Fellowship)

  • Tina Mukherjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Madhwal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,675
    views
  • 632
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sukanya Madhwal
  2. Mingyu Shin
  3. Ankita Kapoor
  4. Manisha Goyal
  5. Manish K Joshi
  6. Pirzada Mujeeb Ur Rehman
  7. Kavan Gor
  8. Jiwon Shim
  9. Tina Mukherjee
(2020)
Metabolic control of cellular immune-competency by odors in Drosophila
eLife 9:e60376.
https://doi.org/10.7554/eLife.60376

Share this article

https://doi.org/10.7554/eLife.60376

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.