Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers

  1. Tianfa Xie
  2. Sarah R St Pierre
  3. Nonthakorn Olaranont
  4. Lauren E Brown
  5. Min Wu  Is a corresponding author
  6. Yubing Sun  Is a corresponding author
  1. University of Massachusetts, United States
  2. Worcester Polytechnic Institute, United States

Abstract

A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the 'condensation tendency'. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e., an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All sequencing data were uploaded to the GEO public repository (https://www.ncbi.nlm.nih.gov/geo/) and were assigned series GSE148155.

The following data sets were generated

Article and author information

Author details

  1. Tianfa Xie

    Mechanical and Industrial Engineering, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1332-4373
  2. Sarah R St Pierre

    Mechanical and Industrial Engineering, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nonthakorn Olaranont

    Mathematical Sciences, Worcester Polytechnic Institute, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren E Brown

    Biomedical Engineering, University of Massachusetts, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Min Wu

    Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, United States
    For correspondence
    mwu2@wpi.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Yubing Sun

    Mechanical and Industrial Engineering, University of Massachusetts, Amherst, United States
    For correspondence
    ybsun@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6831-3383

Funding

National Science Foundation (CMMI 1662835)

  • Yubing Sun

National Science Foundation (CMMI 1846866)

  • Yubing Sun

National Science Foundation (DMS 2012330)

  • Min Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 896
    views
  • 133
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tianfa Xie
  2. Sarah R St Pierre
  3. Nonthakorn Olaranont
  4. Lauren E Brown
  5. Min Wu
  6. Yubing Sun
(2021)
Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers
eLife 10:e60381.
https://doi.org/10.7554/eLife.60381

Share this article

https://doi.org/10.7554/eLife.60381

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources Updated

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Physics of Living Systems
    Marcelo A Carignano, Martin Kroeger ... Igal Szleifer
    Research Article

    We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally defined domains observed by single-cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as RAD21 degradation.