Proofreading through spatial gradients

  1. Vahe Galstyan
  2. Kabir Husain
  3. Fangzhou Xiao
  4. Arvind Murugan  Is a corresponding author
  5. Rob Phillips  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Chicago, United States

Abstract

Key enzymatic processes use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. The applicability of traditional proofreading schemes, however, is limited since they typically require dedicated structural features in the enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we explore an alternative conceptual mechanism that achieves error correction by having substrate binding and subsequent product formation occur at distinct physical locations. The time taken by the enzyme-substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not have the typical structural requirements, making it easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying spatial gradients as a possible route to specificity.

Data availability

All scripts used to generate the data for making the plots are provided in supporting files.

Article and author information

Author details

  1. Vahe Galstyan

    Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7073-9175
  2. Kabir Husain

    Department of Physics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fangzhou Xiao

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Arvind Murugan

    Department of Physics, University of Chicago, Chicago, United States
    For correspondence
    amurugan@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5464-917X
  5. Rob Phillips

    Department of Bioengineering, California Institute of Technology, Pasadena, United States
    For correspondence
    phillips@pboc.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2809

Funding

James S. McDonnell Foundation

  • Kabir Husain

Simons Foundation

  • Arvind Murugan

John Templeton Foundation

  • Rob Phillips

National Institute of General Medical Sciences

  • Rob Phillips

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Galstyan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,943
    views
  • 523
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vahe Galstyan
  2. Kabir Husain
  3. Fangzhou Xiao
  4. Arvind Murugan
  5. Rob Phillips
(2020)
Proofreading through spatial gradients
eLife 9:e60415.
https://doi.org/10.7554/eLife.60415

Share this article

https://doi.org/10.7554/eLife.60415

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Krishna Rijal, Pankaj Mehta
    Research Article

    The Gillespie algorithm is commonly used to simulate and analyze complex chemical reaction networks. Here, we leverage recent breakthroughs in deep learning to develop a fully differentiable variant of the Gillespie algorithm. The differentiable Gillespie algorithm (DGA) approximates discontinuous operations in the exact Gillespie algorithm using smooth functions, allowing for the calculation of gradients using backpropagation. The DGA can be used to quickly and accurately learn kinetic parameters using gradient descent and design biochemical networks with desired properties. As an illustration, we apply the DGA to study stochastic models of gene promoters. We show that the DGA can be used to: (1) successfully learn kinetic parameters from experimental measurements of mRNA expression levels from two distinct Escherichia coli promoters and (2) design nonequilibrium promoter architectures with desired input–output relationships. These examples illustrate the utility of the DGA for analyzing stochastic chemical kinetics, including a wide variety of problems of interest to synthetic and systems biology.

    1. Physics of Living Systems
    Juken Hong, Wenzhi Xue, Teng Wang
    Research Article

    Microbial communities living in the same environment often display alternative stable states, each characterized by a unique composition of species. Understanding the origin and determinants of microbiome multistability has broad implications in environments, human health, and microbiome engineering. However, despite its conceptual importance, how multistability emerges in complex communities remains largely unknown. Here, we focused on the role of horizontal gene transfer (HGT), one important aspect mostly overlooked in previous studies, on the stability landscape of microbial populations. Combining mathematical modeling and numerical simulations, we demonstrate that, when mobile genetic elements (MGEs) only affect bacterial growth rates, increasing HGT rate in general promotes multistability of complex microbiota. We further extend our analysis to scenarios where HGT changes interspecies interactions, microbial communities are subjected to strong environmental selections and microbes live in metacommunities consisting of multiple local habitats. We also discuss the role of different mechanisms, including interspecies interaction strength, the growth rate effects of MGEs, MGE epistasis and microbial death rates in shaping the multistability of microbial communities undergoing HGT. These results reveal how different dynamic processes collectively shape community multistability and diversity. Our results provide key insights for the predictive control and engineering of complex microbiota.