Proofreading through spatial gradients

  1. Vahe Galstyan
  2. Kabir Husain
  3. Fangzhou Xiao
  4. Arvind Murugan  Is a corresponding author
  5. Rob Phillips  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Chicago, United States

Abstract

Key enzymatic processes use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. The applicability of traditional proofreading schemes, however, is limited since they typically require dedicated structural features in the enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we explore an alternative conceptual mechanism that achieves error correction by having substrate binding and subsequent product formation occur at distinct physical locations. The time taken by the enzyme-substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not have the typical structural requirements, making it easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying spatial gradients as a possible route to specificity.

Data availability

All scripts used to generate the data for making the plots are provided in supporting files.

Article and author information

Author details

  1. Vahe Galstyan

    Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7073-9175
  2. Kabir Husain

    Department of Physics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fangzhou Xiao

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Arvind Murugan

    Department of Physics, University of Chicago, Chicago, United States
    For correspondence
    amurugan@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5464-917X
  5. Rob Phillips

    Department of Bioengineering, California Institute of Technology, Pasadena, United States
    For correspondence
    phillips@pboc.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2809

Funding

James S. McDonnell Foundation

  • Kabir Husain

Simons Foundation

  • Arvind Murugan

John Templeton Foundation

  • Rob Phillips

National Institute of General Medical Sciences

  • Rob Phillips

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Galstyan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,958
    views
  • 527
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vahe Galstyan
  2. Kabir Husain
  3. Fangzhou Xiao
  4. Arvind Murugan
  5. Rob Phillips
(2020)
Proofreading through spatial gradients
eLife 9:e60415.
https://doi.org/10.7554/eLife.60415

Share this article

https://doi.org/10.7554/eLife.60415

Further reading

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.