Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks

  1. Connor John Balzer
  2. Michael L James
  3. Heidy Y Narvaez-Ortiz
  4. Luke A Helgeson
  5. Vladimir Sirotkin
  6. Brad J Nolen  Is a corresponding author
  1. University of Oregon, United States
  2. Upstate Medical University, United States
  3. University of Washington, United States

Abstract

The actin filament nucleator Arp2/3 complex is activated at cortical sites in S. pombe to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate 'seed' filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires pre-existing filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from pre-existing filaments. Here we show that Wsp1 is important not only for propagation, but also for initiation of endocytic actin networks. Using single molecule TIRF microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic coactivation does not require pre-existing actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.

Data availability

All data generated and analyzed in this study have been included in the manuscript and supporting source data files. An individual source data file has been provided for Figures 1, 2, 3 and 4.

Article and author information

Author details

  1. Connor John Balzer

    Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael L James

    Cell and Developmental Biology, Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heidy Y Narvaez-Ortiz

    Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Luke A Helgeson

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5112-2751
  5. Vladimir Sirotkin

    Cell and Developmental Biology, Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brad J Nolen

    Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, United States
    For correspondence
    bnolen@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0224-9980

Funding

National Institute of General Medical Sciences (R35GM136319)

  • Brad J Nolen

National Institute of General Medical Sciences (GM007759)

  • Connor John Balzer
  • Luke A Helgeson

American Heart Association (18PRE33960110)

  • Connor John Balzer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Balzer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,316
    views
  • 165
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Connor John Balzer
  2. Michael L James
  3. Heidy Y Narvaez-Ortiz
  4. Luke A Helgeson
  5. Vladimir Sirotkin
  6. Brad J Nolen
(2020)
Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks
eLife 9:e60419.
https://doi.org/10.7554/eLife.60419

Share this article

https://doi.org/10.7554/eLife.60419

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.