Cortical encoding of acoustic and linguistic rhythms in spoken narratives

  1. Cheng Luo
  2. Nai Ding  Is a corresponding author
  1. Zhejiang University, China

Abstract

Speech contains rich acoustic and linguistic information. Using highly controlled speech materials, previous studies have demonstrated that cortical activity is synchronous to the rhythms of perceived linguistic units, e.g., words and phrases, on top of basic acoustic features, e.g., the speech envelope. When listening to natural speech, it remains unclear, however, how cortical activity jointly encodes acoustic and linguistic information. Here, we investigate the neural encoding of words using electroencephalography, and observe neural activity synchronous to multi-syllabic words when participants naturally listen to narratives. An amplitude modulation (AM) cue for word rhythm enhances the word-level response, but the effect is only observed during passive listening. Furthermore, words and the AM cue are encoded by spatially separable neural responses that are differentially modulated by attention. These results suggest that bottom-up acoustic cues and top-down linguistic knowledge separately contribute to cortical encoding of linguistic units in spoken narratives.

Data availability

The EEG data and analysis code (in MatLab) were uploaded as Source data files.

Article and author information

Author details

  1. Cheng Luo

    College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China 310027, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Nai Ding

    Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China 310027, Zhejiang University, Hangzhou, China
    For correspondence
    ding_nai@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3428-2723

Funding

National Natural Science Foundation of China (31771248)

  • Nai Ding

Major Scientific Research Project of Zhejiang Lab (2019KB0AC02)

  • Nai Ding

National Key R & D Program of China (2019YFC0118200)

  • Nai Ding

Zhejiang Provincial Natural Science Foundation of China (LGF19H090020)

  • Cheng Luo

Fundamental Research Funds for the Central Universities (2020FZZX001-05)

  • Nai Ding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Virginie van Wassenhove, CEA, DRF/I2BM, NeuroSpin; INSERM, U992, Cognitive Neuroimaging Unit, France

Ethics

Human subjects: The experimental procedures were approved by the Research Ethics Committee of the College of Medicine, Zhejiang University (2019-047). All participants provided written informed consent prior to the experiment and were paid.

Version history

  1. Received: June 26, 2020
  2. Accepted: December 20, 2020
  3. Accepted Manuscript published: December 21, 2020 (version 1)
  4. Version of Record published: December 31, 2020 (version 2)

Copyright

© 2020, Luo & Ding

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,597
    views
  • 311
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cheng Luo
  2. Nai Ding
(2020)
Cortical encoding of acoustic and linguistic rhythms in spoken narratives
eLife 9:e60433.
https://doi.org/10.7554/eLife.60433

Share this article

https://doi.org/10.7554/eLife.60433

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.