Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase

  1. Xiakun Chu
  2. Zucai Suo
  3. Jin Wang  Is a corresponding author
  1. Stony Brook University, United States
  2. Florida State University, United States

Abstract

The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to "U-shaped' folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4-DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.

Data availability

The necessary files for setting up Gromacs (version 4.5.7 with PLUMED version 2.5.0) simulations and analysis programs/scripts are publicly available at https://osf.io/qu5ve/.

The following data sets were generated

Article and author information

Author details

  1. Xiakun Chu

    Chemistry, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3166-7070
  2. Zucai Suo

    Department of Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3871-3420
  3. Jin Wang

    Chemistry, Stony Brook University, Stony Brook, United States
    For correspondence
    jin.wang.1@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2841-4913

Funding

National Institute of General Medical Sciences (R01GM124177)

  • Zucai Suo
  • Jin Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Chu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,048
    views
  • 155
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiakun Chu
  2. Zucai Suo
  3. Jin Wang
(2020)
Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase
eLife 9:e60434.
https://doi.org/10.7554/eLife.60434

Share this article

https://doi.org/10.7554/eLife.60434

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.