Qki regulates myelinogenesis through Srebp2-dependent cholesterol biosynthesis

  1. Xin Zhou
  2. Seula Shin
  3. Chenxi He
  4. Qiang Zhang
  5. Matthew N Rasband
  6. Jiangong Ren
  7. Congxin Dai
  8. Rocío I Zorrilla-Veloz
  9. Takashi Shingu
  10. Liang Yuan
  11. Yunfei Wang
  12. Yiwen Chen
  13. Fei Lan
  14. Jian Hu  Is a corresponding author
  1. MD Anderson Cancer Center, United States
  2. Fudan University, China
  3. Baylor College of Medicine, United States
  4. Chinese Academy of Medical Sciences and Peking Union Medical College, China
  5. Tufts University, United States

Abstract

Myelination depends on timely, precise control of oligodendrocyte differentiation and myelinogenesis. Cholesterol is the most abundant component of myelin and essential for myelin membrane assembly in the central nervous system. However, the underlying mechanisms of precise control of cholesterol biosynthesis in oligodendrocytes remain elusive. In the present study, we found that Qki depletion in neural stem cells or oligodendrocyte precursor cells in neonatal mice resulted in impaired cholesterol biosynthesis and defective myelinogenesis without compromising their differentiation into Aspa+Gstpi+ myelinating oligodendrocytes. Mechanistically, Qki-5 functions as a co-activator of Srebp2 to control transcription of the genes involved in cholesterol biosynthesis in oligodendrocytes. Consequently, Qki depletion led to substantially reduced concentration of the cholesterol in mouse brain, impairing proper myelin assembly. Our study demonstrated that Qki-Srebp2–controlled cholesterol biosynthesis is indispensable for myelinogenesis and highlights a novel function of Qki as a transcriptional co-activator beyond its canonical function as an RNA-binding protein.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE145116, GSE145117 and GSE144756

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xin Zhou

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seula Shin

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chenxi He

    Liver Cancer Institute, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiang Zhang

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew N Rasband

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8184-2477
  6. Jiangong Ren

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Congxin Dai

    Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Rocío I Zorrilla-Veloz

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Takashi Shingu

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Liang Yuan

    Graduate School of Biomedical Sciences, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yunfei Wang

    Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yiwen Chen

    Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Fei Lan

    Liver Cancer Institute, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Jian Hu

    Department of Cancer Biology, MD Anderson Cancer Center, Houston, United States
    For correspondence
    JHu3@mdanderson.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9760-2013

Funding

NCI (R37CA214800)

  • Jian Hu

MD Anderson Cancer Center (startup)

  • Jian Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were conducted in accordance with protocols approved by the MD Anderson Institutional Animal Care and Use Committee. (IACUC Study #00001392-RN01)

Copyright

© 2021, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,445
    views
  • 427
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Zhou
  2. Seula Shin
  3. Chenxi He
  4. Qiang Zhang
  5. Matthew N Rasband
  6. Jiangong Ren
  7. Congxin Dai
  8. Rocío I Zorrilla-Veloz
  9. Takashi Shingu
  10. Liang Yuan
  11. Yunfei Wang
  12. Yiwen Chen
  13. Fei Lan
  14. Jian Hu
(2021)
Qki regulates myelinogenesis through Srebp2-dependent cholesterol biosynthesis
eLife 10:e60467.
https://doi.org/10.7554/eLife.60467

Share this article

https://doi.org/10.7554/eLife.60467

Further reading

    1. Developmental Biology
    Yanlin Hou, Zhengwen Nie ... Hans R Scholer
    Research Article

    During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.