Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets

  1. Kelsie M Rodriguez
  2. Sara C Buch-Larsen
  3. Ilsa T Kirby
  4. Ivan Siordia
  5. David Hutin
  6. Marit Rasmussen
  7. Denis M Grant
  8. Larry L David
  9. Jason Matthews
  10. Michael Lund Nielsen
  11. Michael S Cohen  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. University of Copenhagen, Denmark
  3. University of California, San Francisco, United States
  4. University of Toronto, Canada
  5. University of Oslo, Norway

Abstract

Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown. Here, we combine chemical genetics, proximity labeling, and proteome-wide amino acid ADP-ribosylation site profiling for identifying the direct targets and sites of PARP-7-mediated MARylation in a cellular context. We found that the inactive PARP family member, PARP-13—a critical regulator of the antiviral innate immune response—is a major target of PARP-7. PARP-13 is preferentially MARylated on cysteine residues in its RNA binding zinc finger domain. Proteome-wide ADP-ribosylation analysis reveals cysteine as a major MARylation acceptor of PARP-7. This study provides insight into PARP-7 targeting and MARylation site preference.

Data availability

All RAW proteomics files have been uploaded to PRIDE. This is related to all Supplementary Tables.

The following data sets were generated

Article and author information

Author details

  1. Kelsie M Rodriguez

    Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara C Buch-Larsen

    Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6250-5467
  3. Ilsa T Kirby

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ivan Siordia

    Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Hutin

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Marit Rasmussen

    Department of Nutrition, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Denis M Grant

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Larry L David

    Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason Matthews

    Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Lund Nielsen

    The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael S Cohen

    Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    For correspondence
    cohenmic@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7636-4156

Funding

National Institute of Neurological Disorders and Stroke (NIH 2R01NS088629)

  • Michael S Cohen

Pew Charitable Trusts (NA)

  • Michael S Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anthony K. L. Leung

Version history

  1. Received: June 27, 2020
  2. Accepted: January 15, 2021
  3. Accepted Manuscript published: January 21, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)
  5. Version of Record updated: March 2, 2021 (version 3)

Copyright

© 2021, Rodriguez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,647
    views
  • 633
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelsie M Rodriguez
  2. Sara C Buch-Larsen
  3. Ilsa T Kirby
  4. Ivan Siordia
  5. David Hutin
  6. Marit Rasmussen
  7. Denis M Grant
  8. Larry L David
  9. Jason Matthews
  10. Michael Lund Nielsen
  11. Michael S Cohen
(2021)
Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets
eLife 10:e60480.
https://doi.org/10.7554/eLife.60480

Share this article

https://doi.org/10.7554/eLife.60480

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.