Single molecule microscopy reveals key physical features of repair foci in living cells

  1. Judith Miné-Hattab  Is a corresponding author
  2. Mathias Heltberg
  3. Marie Villemeur
  4. Chloé Guedj
  5. Thierry Mora
  6. Aleksandra M Walczak
  7. Maxime Dahan
  8. Angela Taddei  Is a corresponding author
  1. Institut Curie, France
  2. Ecole Normale Supérieure, France
  3. École Normale Supérieure, France

Abstract

In response to double strand breaks (DSB), repair proteins accumulate at damaged sites, forming membrane-less sub-compartments or foci. Here we explored the physical nature of these foci, using single molecule microscopy in living cells. Rad52, the functional homolog of BRCA2 in yeast, accumulates at DSB sites and diffuses ~6 times faster within repair foci than the focus itself, exhibiting confined motion. The Rad52 confinement radius coincides with the focus size: foci resulting from 2 DSBs are twice larger in volume that the ones induced by a unique DSB and the Rad52 confinement radius scales accordingly. In contrast, molecules of the single strand binding protein Rfa1 follow anomalous diffusion similar to the focus itself or damaged chromatin. We conclude that while most Rfa1 molecules are bound to the ssDNA, Rad52 molecules are free to explore the entire focus reflecting the existence of a liquid droplet around damaged DNA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are available on zenodo using the following link: https://zenodo.org/record/4495116.

The following data sets were generated

Article and author information

Author details

  1. Judith Miné-Hattab

    UMR 3664 - Nuclear Dynamics, Institut Curie, Paris, France
    For correspondence
    judith.Mine@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9986-4092
  2. Mathias Heltberg

    UMR 3664 - Nuclear Dynamics, Institut Curie, paris, France
    Competing interests
    No competing interests declared.
  3. Marie Villemeur

    UMR3664 - Nuclear Dynamics, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  4. Chloé Guedj

    UMR3664 - Nuclear Dynamics, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  5. Thierry Mora

    Laboratoire de physique, Ecole Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  6. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  7. Maxime Dahan

    Division of Genetics, Genomics & Development, Department of Molecular and Cell Biology, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  8. Angela Taddei

    UMR3664, Institut Curie, Paris, France
    For correspondence
    angela.taddei@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-0739

Funding

Agence Nationale de la Recherche (ANR-11-LABEX-0044 DEEP)

  • Angela Taddei

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Angela Taddei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irene E Chiolo, University of Southern California, United States

Version history

  1. Received: June 30, 2020
  2. Accepted: January 26, 2021
  3. Accepted Manuscript published: February 5, 2021 (version 1)
  4. Version of Record published: March 1, 2021 (version 2)
  5. Version of Record updated: March 5, 2021 (version 3)

Copyright

© 2021, Miné-Hattab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,329
    Page views
  • 495
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Miné-Hattab
  2. Mathias Heltberg
  3. Marie Villemeur
  4. Chloé Guedj
  5. Thierry Mora
  6. Aleksandra M Walczak
  7. Maxime Dahan
  8. Angela Taddei
(2021)
Single molecule microscopy reveals key physical features of repair foci in living cells
eLife 10:e60577.
https://doi.org/10.7554/eLife.60577

Share this article

https://doi.org/10.7554/eLife.60577

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Camille Morel, Eline Lemerle ... Emmanuel Lemichez
    Research Article

    Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.

    1. Physics of Living Systems
    Davin Jeong, Guang Shi ... D Thirumalai
    Research Article

    Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer–promoter/promoter–promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.