Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig  Is a corresponding author
  1. Instituto de Neurociencias CSIC-UMH, Spain

Abstract

Behavioural studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioural-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

Data availability

All data generated during and/or analysed during the current study, as well as the required code to reproduce the figures, is available on the CSIC public repository. This is the URL access http://dx.doi.org/10.20350/digitalCSIC/13750.

The following data sets were generated

Article and author information

Author details

  1. Javier Alegre-Cortés

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. María Sáez

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9137-6692
  3. Roberto Montanari

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ramon Reig

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    For correspondence
    ramon.reig@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6475-4181

Funding

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2014-60809-IN)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV-2013-0317 and SEV-2017-0723)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV2013-0317)

  • María Sáez

Fundacion la Caixa (2016/00006/001)

  • Roberto Montanari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experimental procedures were conformed to the directive 2010/63/EU of the European Parliament and the RD 53/2013 Spanish regulation on the protection of animals use for scientific purposes, approved by the government of the Autonomous Community of Valencia, under the supervision of the Consejo Superior de Investigaciones Científicas and the Miguel Hernandez University Committee for Animal use in Laboratory.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Publication history

  1. Received: September 27, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 18, 2021 (version 1)
  4. Version of Record published: March 2, 2021 (version 2)

Copyright

© 2021, Alegre-Cortés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,805
    Page views
  • 372
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig
(2021)
Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum
eLife 10:e60580.
https://doi.org/10.7554/eLife.60580

Further reading

    1. Neuroscience
    Mattia Chini et al.
    Research Article

    Throughout development, the brain transits from early highly synchronous activity patterns to a mature state with sparse and decorrelated neural activity, yet the mechanisms underlying this process are poorly understood. The developmental transition has important functional consequences, as the latter state is thought to allow for more efficient storage, retrieval and processing of information. Here, we show that, in the mouse medial prefrontal cortex (mPFC), neural activity during the first two postnatal weeks decorrelates following specific spatial patterns. This process is accompanied by a concomitant tilting of excitation-inhibition (E-I) ratio towards inhibition. Using optogenetic manipulations and neural network modeling, we show that the two phenomena are mechanistically linked, and that a relative increase of inhibition drives the decorrelation of neural activity. Accordingly, in mice mimicking the etiology of neurodevelopmental disorders, subtle alterations in E-I ratio are associated with specific impairments in the correlational structure of spike trains. Finally, capitalizing on EEG data from newborn babies, we show that an analogous developmental transition takes place also in the human brain. Thus, changes in E-I ratio control the (de)correlation of neural activity and, by these means, its developmental imbalance might contribute to the pathogenesis of neurodevelopmental disorders.

    1. Neuroscience
    Kevin J Miller et al.
    Research Article

    Humans and animals make predictions about the rewards they expect to receive in different situations. In formal models of behavior, these predictions are known as value representations, and they play two very different roles. Firstly, they drive choice: the expected values of available options are compared to one another, and the best option is selected. Secondly, they support learning: expected values are compared to rewards actually received, and future expectations are updated accordingly. Whether these different functions are mediated by different neural representations remains an open question. Here we employ a recently-developed multi-step task for rats that computationally separates learning from choosing. We investigate the role of value representations in the rodent orbitofrontal cortex, a key structure for value-based cognition. Electrophysiological recordings and optogenetic perturbations indicate that these representations do not directly drive choice. Instead, they signal expected reward information to a learning process elsewhere in the brain that updates choice mechanisms.