Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig  Is a corresponding author
  1. Instituto de Neurociencias CSIC-UMH, Spain

Abstract

Behavioural studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioural-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

Data availability

All data generated during and/or analysed during the current study, as well as the required code to reproduce the figures, is available on the CSIC public repository. This is the URL access http://dx.doi.org/10.20350/digitalCSIC/13750.

The following data sets were generated

Article and author information

Author details

  1. Javier Alegre-Cortés

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. María Sáez

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9137-6692
  3. Roberto Montanari

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ramon Reig

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    For correspondence
    ramon.reig@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6475-4181

Funding

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2014-60809-IN)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV-2013-0317 and SEV-2017-0723)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV2013-0317)

  • María Sáez

Fundacion la Caixa (2016/00006/001)

  • Roberto Montanari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Ethics

Animal experimentation: All the experimental procedures were conformed to the directive 2010/63/EU of the European Parliament and the RD 53/2013 Spanish regulation on the protection of animals use for scientific purposes, approved by the government of the Autonomous Community of Valencia, under the supervision of the Consejo Superior de Investigaciones Científicas and the Miguel Hernandez University Committee for Animal use in Laboratory.

Version history

  1. Received: September 27, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 18, 2021 (version 1)
  4. Version of Record published: March 2, 2021 (version 2)

Copyright

© 2021, Alegre-Cortés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,000
    views
  • 464
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig
(2021)
Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum
eLife 10:e60580.
https://doi.org/10.7554/eLife.60580

Share this article

https://doi.org/10.7554/eLife.60580

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.