Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig  Is a corresponding author
  1. Instituto de Neurociencias CSIC-UMH, Spain

Abstract

Behavioural studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioural-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

Data availability

All data generated during and/or analysed during the current study, as well as the required code to reproduce the figures, is available on the CSIC public repository. This is the URL access http://dx.doi.org/10.20350/digitalCSIC/13750.

The following data sets were generated

Article and author information

Author details

  1. Javier Alegre-Cortés

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. María Sáez

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9137-6692
  3. Roberto Montanari

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ramon Reig

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    For correspondence
    ramon.reig@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6475-4181

Funding

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2014-60809-IN)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV-2013-0317 and SEV-2017-0723)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV2013-0317)

  • María Sáez

Fundacion la Caixa (2016/00006/001)

  • Roberto Montanari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Ethics

Animal experimentation: All the experimental procedures were conformed to the directive 2010/63/EU of the European Parliament and the RD 53/2013 Spanish regulation on the protection of animals use for scientific purposes, approved by the government of the Autonomous Community of Valencia, under the supervision of the Consejo Superior de Investigaciones Científicas and the Miguel Hernandez University Committee for Animal use in Laboratory.

Version history

  1. Received: September 27, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 18, 2021 (version 1)
  4. Version of Record published: March 2, 2021 (version 2)

Copyright

© 2021, Alegre-Cortés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,054
    views
  • 472
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig
(2021)
Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum
eLife 10:e60580.
https://doi.org/10.7554/eLife.60580

Share this article

https://doi.org/10.7554/eLife.60580

Further reading

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.