1. Neuroscience
Download icon

Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum

  1. Javier Alegre-Cortés
  2. María Sáez
  3. Roberto Montanari
  4. Ramon Reig  Is a corresponding author
  1. Instituto de Neurociencias CSIC-UMH, Spain
Research Article
  • Cited 0
  • Views 646
  • Annotations
Cite this article as: eLife 2021;10:e60580 doi: 10.7554/eLife.60580

Abstract

Behavioural studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioural-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

Article and author information

Author details

  1. Javier Alegre-Cortés

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. María Sáez

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9137-6692
  3. Roberto Montanari

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ramon Reig

    Cellular and Systems Neurobiology, Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
    For correspondence
    ramon.reig@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6475-4181

Funding

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BFU2014-60809-IN)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV-2013-0317 and SEV-2017-0723)

  • Ramon Reig

Ministerio de Economía, Industria y Competitividad, Gobierno de España (SEV2013-0317)

  • María Sáez

Fundacion la Caixa (2016/00006/001)

  • Roberto Montanari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the experimental procedures were conformed to the directive 2010/63/EU of the European Parliament and the RD 53/2013 Spanish regulation on the protection of animals use for scientific purposes, approved by the government of the Autonomous Community of Valencia, under the supervision of the Consejo Superior de Investigaciones Científicas and the Miguel Hernandez University Committee for Animal use in Laboratory.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Publication history

  1. Received: June 30, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 18, 2021 (version 1)

Copyright

© 2021, Alegre-Cortés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 646
    Page views
  • 141
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Daniela Saderi et al.
    Research Article Updated

    Both generalized arousal and engagement in a specific task influence sensory neural processing. To isolate effects of these state variables in the auditory system, we recorded single-unit activity from primary auditory cortex (A1) and inferior colliculus (IC) of ferrets during a tone detection task, while monitoring arousal via changes in pupil size. We used a generalized linear model to assess the influence of task engagement and pupil size on sound-evoked activity. In both areas, these two variables affected independent neural populations. Pupil size effects were more prominent in IC, while pupil and task engagement effects were equally likely in A1. Task engagement was correlated with larger pupil; thus, some apparent effects of task engagement should in fact be attributed to fluctuations in pupil size. These results indicate a hierarchy of auditory processing, where generalized arousal enhances activity in midbrain, and effects specific to task engagement become more prominent in cortex.

    1. Neuroscience
    Pratish Thakore et al.
    Research Article

    Cerebral blood flow is dynamically regulated by neurovascular coupling to meet the dynamic metabolic demands of the brain. We hypothesized that TRPA1 channels in capillary endothelial cells are stimulated by neuronal activity and instigate a propagating retrograde signal that dilates upstream parenchymal arterioles to initiate functional hyperemia. We find that activation of TRPA1 in capillary beds and post-arteriole transitional segments with mural cell coverage initiates retrograde signals that dilate upstream arterioles. These signals exhibit a unique mode of biphasic propagation. Slow, short-range intercellular Ca2+ signals in the capillary network are converted to rapid electrical signals in transitional segments that propagate to and dilate upstream arterioles. We further demonstrate that TRPA1 is necessary for functional hyperemia and neurovascular coupling within the somatosensory cortex of mice in vivo. These data establish endothelial cell TRPA1 channels as neuronal activity sensors that initiate microvascular vasodilatory responses to redirect blood to regions of metabolic demand.