Conformation of the nuclear pore in living cells is modulated by transport state

  1. Joan Pulupa
  2. Harriet Prior
  3. Daniel S Johnson
  4. Sanford M Simon  Is a corresponding author
  1. Laboratory of Cellular Biophysics, Rockefeller University, United States
  2. Department of Physics and Astronomy, Hofstra University, United States
6 figures, 1 table and 4 additional files

Figures

Figure 1 with 1 supplement
The orientation of Nup-mEGFP fusion proteins can be measured in individual NPCs with pol-TIRFM.

(A) Using pol-TIRFM, the bottom of the nucleus is illuminated and Nup-mEGFP fusion proteins are excited with p^-polarized or s^-polarized light. p^-excitation is parallel and s^-excitation is …

Figure 1—figure supplement 1
The orientation of Nup-mEGFP fusion proteins can be monitored with pol-TIRFM.

Four different Nup-mEGFP (Nup133, Nup93, Nup54, and Nup58) were transiently expressed for 48 hr in HeLa cells. (Columns 1–2) The constructs were alternately excited with p^-polarized (perpendicular …

Varying the length of the linker between the Nup and the mEGFP by single amino acids to test validity of the orientational sensors.

(A) Nup133-mEGFP, with linkers of different lengths at its carboxyl terminus, conjugated to mEGFP. A change in the linker length by a single amino acid changes the p:s ratio. Pairs of different …

Figure 3 with 3 supplements
The Inner Ring Nups, Nup54 and Nup58, are reorganized with respect to the NPC after starvation.

Cells were maintained in complete media (CM) or starved for 24 hr in HBSS prior to imaging. The p:s ratios and representative images are presented for: (A) Nup133-mEGFP(−8a), (B) Nup93-mEGFP(–5), (C

Figure 3—figure supplement 1
Nuclear transport is attenuated post-starvation.

(A) The NLS domain of the LANS construct normally is masked by the AsLOV2 domain and the protein remains predominantly in the cytosol. Upon stimulation with blue light, the NLS is unmasked and the …

Figure 3—figure supplement 2
The Inner Ring Nups, Nup54 and Nup58, are reorganized with respect to the NPC after starvation.

Cells were maintained in complete media (CM) or starved for 24 hr in HBSS prior to imaging. The p:s ratios are presented for: (A) Nup133-mEGFP(−8b), (B) Nup133-mEGFP(−9a), (C) Nup133-mEGFP(−9b), (D) …

Figure 3—figure supplement 3
Cells were maintained in complete media (CM) or starved for 24 hr in HBSS prior to imaging.

The p:s ratios are presented for: (A) Nup54 no FG-mEGFP494(0), (B) Nup54 no FG-mEGFP494(1), (C) Nup54 no FG-mEGFP494(2) (n = 300 NPCs, 10 cells, boxes indicate quartiles, center bars indicate …

Figure 4 with 2 supplements
Conformational changes of the Inner Ring of the NPC revealed by perturbations of cargo state in CRISPR cell lines.

(A-B) No morphological distortions are detected in cell lines endogenously expressing orientational sensors. (C) Nup133-mEGFP cell lines with the mEGFP at the carboxyl-terminus of the protein with …

Figure 4—figure supplement 1
Validation of CRISPR cell lines.

(A–B) PCR amplification of the Nup54 and Nup133 region reveal one band when the Nup-mEGFP region is homozygous for mEGFP incorporation and two bands when the region is heterozygous. The bands were …

Figure 4—figure supplement 2
The Inner Ring Nup Nup54 is reorganized with respect to the NPC after starvation.

Hap1 cell lines that had been engineered with CRISPR/Cas9 were maintained in complete media (CM) or starved for 24 hr in HBSS prior to imaging. The p:s ratios are presented for: (A) …

Figure 5 with 1 supplement
Karyopherin content at the nuclear periphery induces conformational changes in Nup54-mEGFP494 but not Nup133-mEGFP.

(A) Digitonin permeabilization allows the introduction of transport factors to the nuclear periphery. (B-E) Nup133-mEGFP does not experience a shift in orientation after removal of endogenous kaps …

Figure 5—figure supplement 1
Introduction of nuclear transport factors to the nuclear periphery using digitonin permeabilization of the plasma membrane.

(A) Cells were incubated with R-phycoerythrin after the digitonin permeabilization protocol was performed with (left) 0 µg/mL digitonin, for which no R-phycoerythrin is detected in the cell, …

FRET between Nup62 ‘finger’ domains increases after starvation.

Under starvation conditions, FRET increased between Nup62 ‘finger’ domains. (A) Schematic of Nup62 FRET probe labeling scheme. (B) FRET efficiency for HeLa cells were imaged 48 hr post transfection. …

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or referenceIdentifiersAdditional information
Antibodyα- karyopherin α1/6 (2D9) (rat monoclonal)Santa Cruzsc-101540
RRID:AB_2133549
IF 1:500
Antibodyα-kap1ß/impß −1 (3E9) (mouse monoclonal)Abcamab2811
RRID:AB_2133989
IF 1:1000
Antibodyanti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (goat polyclonal)InvitrogenCAT # A-11008
RRID:AB_2534074
IF 1:2000
Antibodyanti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 594 (goat polyclonal)InvitrogenCAT # A-11005
RRID:AB_141372
IF 1:2000
Antibodyanti-GFP: Living Colors A.v. Monoclonal Antibody (JL-8)ClontechCAT # 632381
RRID:AB_2313808
WB 1:1000
Antibodyanti-Mouse IgG (Fab specific)–Peroxidase antibody (goat polyclonal)Sigma-AldrichCAT # A9917
RRID:AB_258476
WB 1:50,000
AntibodyAnti-β-Actin antibody, Ac-74 (mouse monoclonal)Sigma-AldrichCAT # A5316
RRID:AB_476743
WB 1:1000
Strain, strain background (Escherichia coli)BL21-CodonPlus (DE3)-RILAgilentCAT # 230245Chemically competent cells
Chemical compound, drugDulbecco’s Modified Eagle’s MediumGibcoCAT # 11995–065
Chemical compound, drugFetal Bovine SerumSigma-AldrichCAT #F4135
Chemical compound, drugHanks Balanced Salt Solution with Calcium and MagnesiumGibcoCAT # 14025076
Chemical compound, drugLeptomycin BSigma-AldrichCAT # L291325 nM
Chemical compound, drugFibronectinGibcoCAT # 33010018
Chemical compound, drugParaformaldehydeElectron Microscopy SciencesCAT #157114% w/v
Chemical compound, drugPBS, pH 7.4GibcoCAT # 10010023
Chemical compound, drugNormal Donkey SerumSigma-AldrichCAT # 5664602.5% v/v
Chemical compound, drugNormal Goat SerumSigma-AldrichCAT # NS02L2.5% v/v
Chemical compound, drugBovine Serum AlbuminSigma-AldrichCAT #A21531% v/v
Chemical compound, drugSlowFade Diamond Antifade MountantInvitrogenCAT # S36972
Chemical compound, drugFuGENE 6 Transfection ReagentPromegaCAT #E2691
Chemical compound, drugOpti-MEM I Reduced Serum Medium, no phenol redGibcoCAT # 11058021
Chemical compound, drugDigitonin, High Purity – CalbiochemMilliporeCAT # 300410; CAS 11024-24-134 µg/mL
Chemical compound, drug360kD polyvinylpyrrolidone (PVP)Sigma-AldrichCAT #PVP360; CAS 9003-39-81.5% w/v
Chemical compound, drugR-phycoerythrinThermoFisherCAT # P801500 ng/mL
Chemical compound, drugisopropyl β-D-1-thiogalactopyranoside (IPTG)Sigma-AldrichCAT # I55020.5 mM
Chemical compound, drugBenzonase NucleaseEMD MilliporeCAT # 7074625 U/mL
Chemical compound, drugrLysozyme SolutionEMD MilliporeCAT # 7111012 U/mL
Chemical compound, drugcOmplete, EDTA-free Protease Inhibitor CocktailRocheCAT # 11873580001
Chemical compound, drugImidazoleAlfa AesarCAT #47274; CAS 288-32-4
Chemical compound, drugNi-NTA AgaroseQiagenCAT # 30250
Chemical compound, drugGuanosine-5'-Triphosphate Disodium SaltFisher ScientificCAT # AAJ16800MC; CAS 56001-37-70.1 mM
Chemical compound, drugAdenosine 5'-triphosphate disodium salt (ATP disodium salt) hydrateVWRCAT # TCA0157; CAS 34369-07-81 mM
Chemical compound, drugCreatine phosphateSigma-AldrichCAT # CRPHO-RO; CAS 71519-72-71 mg/mL
Chemical compound, drugCreatine Phosphokinase, Porcine HeartSigma-AldrichCAT # 238395; CAS 9001-15-415 U/mL
Chemical compound, drugNucBlue Live ReadyProbes Reagent (Hoechst 33342)ThermoFisherCAT # R37605
Chemical compound, drugFuGENE HD Transfection ReagentPromegaCAT # E2311
Chemical compound, drugPuromycinInvivogenCAT # ant-pr-5
Cell line (Homo-sapiens)HeLa CellsATCCCCL-2
RRID:CVCL_0030
Cell line (Homo-sapiens)Hap1 CellsHorizonN/A
Cell line (Homo-sapiens)Nup133_mEGFP(−9)This PaperN/ACRISPR-edited Hap1 cell line expressing Nup133_mEGFP(−9)
Cell line (Homo-sapiens)Nup133_mEGFP(−8)This PaperN/ACRISPR-edited Hap1 cell line expressing Nup133_mEGFP(−8)
Cell line (Homo-sapiens)Nup54-mEGFP494(0)This PaperN/ACRISPR-edited Hap1 cell line expressing Nup54-mEGFP494(0)
Cell line (Homo-sapiens)Nup54-mEGFP494(1)This PaperN/ACRISPR-edited Hap1 cell line expressing Nup54-mEGFP494(1)
Cell line (Homo-sapiens)Nup54-mEGFP494(2)This PaperN/ACRISPR-edited Hap1 cell line expressing Nup54-mEGFP494(2)
Cell line (Homo-sapiens)Nup62_mCherry290_mEGFP321This PaperN/ACRISPR-edited Hap1 cell line expressing Nup62_mCherry290_mEGFP321
Sequence-based reagentCloning Primer Nup54 CRISPR ForwardThis PaperPCR primersCACCCGATCTAGAAGATATAAAGC (guide bolded)
Sequence-based reagentCloning Primer Nup54 CRISPR ReverseThis PaperPCR primersAAACGCTTTATATCTTCTAGATCG
Sequence-based reagentCloning Primer Nup133 CRISPR ForwardThis PaperPCR primersCACCGCTCAGTGAGTACTTACCGG (guide bolded)
Sequence-based reagentCloning Primer Nup133 CRISPR ReverseThis PaperPCR primersAAACCCGGTAAGTACTCACTGAGC
Sequence-based reagentPCR Primer Nup54 ForwardThis PaperPCR primersCCTGTGACTAGCTTGCAGTT
Sequence-based reagentPCR Primer Nup54 ReverseThis PaperPCR primersACCTCTGATGTGGATGGTTTC
Sequence-based reagentPCR Primer Nup133 ForwardThis PaperPCR primersAGTCCAATCCTTACTTCGAGTTT
Sequence-based reagentPCR Primer Nup133 ReverseThis PaperPCR primersAGGAACAACAACTGACACATTTC
Recombinant DNA reagentNup133_mEGFP(−8a)
(plasmid)
Kampmann et al., 2011Addgene # 163417Mammalian expression of Nup133 fused at carboxy-terminus to mEGFP with total net fusion of (−8 amino acids)
Recombinant DNA reagentNup133_mEGFP(−8b)
(plasmid)
Kampmann et al., 2011Addgene #163418Mammalian expression of Nup133 fused at carboxy-terminus to mEGFP with total net fusion of (−8 amino acids)
Recombinant DNA reagentNup133_mEGFP(−9a)
(plasmid)
Kampmann et al., 2011Addgene # 163419Mammalian expression of Nup133 fused at carboxy-terminus to mEGFP with total net fusion of (−9 amino acids)
Recombinant DNA reagentNup133_mEGFP(−9b)
(plasmid)
Kampmann et al., 2011Addgene # 163420Mammalian expression of Nup133 fused at carboxy-terminus to mEGFP with total net fusion of (−9 amino acids)
Recombinant DNA reagentNup93_mEGFP(−5)
(plasmid)
This paperAddgene # 163421Mammalian expression of Nup93 fused at carboxy-terminus to mEGFP with total net fusion of (−5 amino acids)
Recombinant DNA reagentNup93_mEGFP(−6)
(plasmid)
This paperAddgene # 163422Mammalian expression of Nup93 fused at carboxy-terminus to mEGFP with total net fusion of (−6 amino acids)
Recombinant
DNA reagent
Nup58_mEGFP(−6)
(plasmid)
This paperAddgene # 163423Mammalian expression of Nup58 with mEGFP (missing first six amino acids) at position 412
Recombinant DNA reagentNup58_mEGFP(−7)
(plasmid)
This paperAddgene # 163424Mammalian expression of Nup58 with mEGFP (missing first seven amino acids) at position 412
Recombinant DNA reagentNup58_mEGFP(−8)
(plasmid)
This paperAddgene # 163425Mammalian expression of Nup58 with mEGFP (missing first eight amino acids) at position 412
Recombinant DNA reagentNup54-mEGFP494(0)
(plasmid)
This paperAddgene # 163426Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with five amino acid rigid alpha helical linker
Recombinant DNA reagentNup54-mEGFP494(1)
(plasmid)
This paperAddgene # 163427Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with six amino acid rigid alpha-helical linker
Recombinant DNA reagentNup54-mEGFP494(2)
(plasmid)
This paperAddgene # 163428Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with seven amino acid rigid alpha helical linker
Recombinant DNA reagentNup54-mEGFP494(flex0)(plasmid)This paperAddgene # 163429Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with five amino acid flexible alpha-helical linker
Recombinant DNA reagentNup54-mEGFP494(flex1)(plasmid)This paperAddgene # 163430Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with six amino acid flexible alpha-helical linker
Recombinant DNA reagentNup54-mEGFP494(flex2)(plasmid)This paperAddgene # 163431Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494 with seven amino acid flexible alpha helical linker
Recombinant DNA reagentNup54_mEGFP494(−4)
(plasmid)
This paperAddgene # 163432Mammalian expression of Nup54 with mEGFP (missing first four amino acids) at amino acid 494
Recombinant DNA reagentNup54_mEGFP494(−5)
(plasmid)
This paperAddgene # 163433Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at amino acid 494
Recombinant DNA reagentNup54_mEGFP494(−6)
(plasmid)
This paperAddgene # 163434Mammalian expression of Nup54 with mEGFP (missing first six amino acids) at amino acid 494
Recombinant DNA reagentNup54_mEGFP510(−4)
(plasmid)
This paperAddgene # 163435Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at the carboxy-terminus with total net fusion of (−4) amino acids
Recombinant DNA reagentNup54_mEGFP510(−5)
(plasmid)
This paperAddgene # 163436Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at the carboxy-terminus with total net fusion of (−5) amino acids
Recombinant DNA reagentNup54_mEGFP510(−6)
(plasmid)
This paperAddgene # 163437Mammalian expression of Nup54 with mEGFP (missing first five amino acids) at the carboxy-terminus with total net fusion of (−6) amino acids
Recombinant DNA reagentpSpCas9(BB)−2A-Puro (PX459) V2.0
(plasmid)
Ran et al., 2013Addgene # 62988
Recombinant DNA reagentpTriEx-mCherry::LANS4
(plasmid)
Yumerefendi et al., 2015Addgene #60785
Recombinant DNA reagentBFP-RanQ69L
(plasmid)
This paperAddgene # 163438Mammalian expression of RanQ69L with tag-BFP
Recombinant DNA reagentpET28-RAN
(plasmid)
Günter BlobelAddgene # 163439Ran in pET28 protein expression backbone
Recombinant DNA reagentpET28_KPNA1
(plasmid)
This paperAddgene #163440KPNA1 in pET28 protein expression backbone
Recombinant DNA reagentpET28-KPNB1
(plasmid)
This paperAddgene # 163441KPNB1 in pET28 protein expression backbone
Recombinant DNA reagentpET28-NTF2
(plasmid)
This paperAddgene # 163442NTF2 in pET28 protein expression backbone
Recombinant DNA reagentNup54 no FG-mEGFP494(0)This paperAddgene # 164269Mammalian expression of Nup54 without the FG-Nup domain, with mEGFP (missing the first 5 amino acids) at amino acid position 494 with a rigid alpha helix of 5 amino acids at the carboxyl end of mEGFP
Recombinant DNA reagentNup54 no FG-mEGFP494(1)This paperAddgene # 164270Mammalian expression of Nup54 without the FG-Nup domain, with mEGFP (missing the first 5 amino acids) at amino acid position 494 with a rigid alpha helix of 6 amino acids at the carboxyl end of mEGFP
Recombinant DNA reagentNup54 no FG-mEGFP494(2)This paperAddgene # 164271Mammalian expression of Nup54 without the FG-Nup domain, with mEGFP (missing the first 5 amino acids) at amino acid position 494 with a rigid alpha helix of 7 amino acids at the carboxyl end of mEGFP
Recombinant DNA reagentNLS-tdTomatoThis paperAddgene # 163443Bacterial expression of His-tagged, SV40 NLS-tagged tdTomato in the modified pRSETB protein expression backbone
Software, algorithmMetamorph Ver 7.7.8Molecular Deviceshttps://www.moleculardevices.com/products/cellular-imaging-systems/acquisition-and-analysis-software/metamorph-microscopy#gref
Software, algorithmMatLab 2019AMathworkshttps://www.mathworks.com/
Software, algorithmFijiSchindelin et al., 2012https://imagej.net/Fiji/Downloads
Software, algorithmCRISPR Guide RNA DesignBenchlinghttps://www.benchling.com/crispr/
Software, algorithmAdobe IllustratorAdobehttps://www.adobe.com/products/illustrator.html

Additional files

Source code 1

Analysis code for quantification of orientation.

https://cdn.elifesciences.org/articles/60654/elife-60654-code1-v1.zip
Supplementary file 1

Table of Nup-mEGFP transfected fusion protein linkage identities.

The size of mEGFP deletion describes the number of amino acids deleted from the amino terminus of mEGFP and the net linker size describes the number of amino acids in the linker minus the deletions from the Nup and mEGFP.

https://cdn.elifesciences.org/articles/60654/elife-60654-supp1-v1.docx
Supplementary file 2

Table of Nup-mEGFP cell line linkage identities.

The size of mEGFP deletion describes the number of amino acids deleted from the amino terminus of mEGFP and the net linker size describes the number of amino acids in the linker minus the deletions from the Nup and mEGFP.

https://cdn.elifesciences.org/articles/60654/elife-60654-supp2-v1.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/60654/elife-60654-transrepform-v1.pdf

Download links