Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis

  1. Atsuko Kinoshita
  2. Alice Vayssières
  3. René Richter
  4. Qing Sang
  5. Adrian Roggen
  6. Annabel D van Driel
  7. Richard S Smith
  8. George Coupland  Is a corresponding author
  1. Tokyo Metropolitan University, Japan
  2. Max Planck Institute for Plant Breeding Research, Germany

Abstract

Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM, and highlight the role of local regulation of gibberellin.

Data availability

All data generated this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 3, 6 and 7 and 8

Article and author information

Author details

  1. Atsuko Kinoshita

    Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9095-389X
  2. Alice Vayssières

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. René Richter

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9833-2211
  4. Qing Sang

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian Roggen

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Annabel D van Driel

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1629-5961
  7. Richard S Smith

    Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9220-0787
  8. George Coupland

    Plant developmental biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    For correspondence
    coupland@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6988-4172

Funding

Alexander von Humboldt-Stiftung

  • Atsuko Kinoshita

Japanese Society for the promotion of Science

  • Atsuko Kinoshita

Deutsche Forschungsgemeinschaft (390686111)

  • George Coupland

Max-Planck-Gesellschaft (Open-access funding)

  • George Coupland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hao Yu, National University of Singapore & Temasek Life Sciences Laboratory, Singapore

Version history

  1. Received: July 2, 2020
  2. Accepted: December 12, 2020
  3. Accepted Manuscript published: December 14, 2020 (version 1)
  4. Version of Record published: December 29, 2020 (version 2)

Copyright

© 2020, Kinoshita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,486
    Page views
  • 1,345
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Atsuko Kinoshita
  2. Alice Vayssières
  3. René Richter
  4. Qing Sang
  5. Adrian Roggen
  6. Annabel D van Driel
  7. Richard S Smith
  8. George Coupland
(2020)
Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis
eLife 9:e60661.
https://doi.org/10.7554/eLife.60661

Share this article

https://doi.org/10.7554/eLife.60661

Further reading

    1. Cell Biology
    2. Plant Biology
    Maciek Adamowski, Ivana Matijević, Jiří Friml
    Research Article

    The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Pradeep Kumar, Ankit Roy ... Rajan Sankaranarayanan
    Research Article

    Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.