Convergence of cortical types and functional motifs in the human mesiotemporal lobe

  1. Casey Paquola  Is a corresponding author
  2. Oualid Benkarim
  3. Jordan DeKraker
  4. Sara Lariviere
  5. Stefan Frässle
  6. Jessica Royer
  7. Shahin Tavakol
  8. Sofie Valk
  9. Andrea Bernasconi
  10. Neda Bernasconi
  11. Ali Khan
  12. Alan C Evans
  13. Adeel Razi
  14. Jonathan Smallwood
  15. Boris Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. University of Western Ontario, Canada
  3. ETH Zurich, Switzerland
  4. Max Planck Institute Leipzig, Germany
  5. Monash University, Australia
  6. University of York, United Kingdom

Abstract

The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organization.

Data availability

Code and data related to this specific project are openly available under https://github.com/MICA-MNI/micaopen/tree/master/cortical_confluence, BigBrain related information are openly available under https://bigbrain.loris.ca/main.php. The human connectome project dataset is available under https://db.humanconnectome.org/.

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    casey.paquola@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Oualid Benkarim

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Lariviere

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5701-1307
  5. Stefan Frässle

    Biomedical, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8011-2226
  6. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Shahin Tavakol

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Sofie Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea Bernasconi

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Neda Bernasconi

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Alan C Evans

    Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Adeel Razi

    Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0779-9439
  14. Jonathan Smallwood

    Department of Psychology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9536-7862

Funding

Canadian HIV Trials Network, Canadian Institutes of Health Research (CIHR FDN-154298)

  • Boris Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Morgan Barense, University of Toronto, Canada

Ethics

Human subjects: Participants gave informed consent and the study was approved by the local Research Ethics Board of the Montreal Neurological Institute and Hospital (2018-3469).

Version history

  1. Received: July 3, 2020
  2. Accepted: November 3, 2020
  3. Accepted Manuscript published: November 4, 2020 (version 1)
  4. Version of Record published: November 17, 2020 (version 2)

Copyright

© 2020, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,347
    views
  • 272
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey Paquola
  2. Oualid Benkarim
  3. Jordan DeKraker
  4. Sara Lariviere
  5. Stefan Frässle
  6. Jessica Royer
  7. Shahin Tavakol
  8. Sofie Valk
  9. Andrea Bernasconi
  10. Neda Bernasconi
  11. Ali Khan
  12. Alan C Evans
  13. Adeel Razi
  14. Jonathan Smallwood
  15. Boris Bernhardt
(2020)
Convergence of cortical types and functional motifs in the human mesiotemporal lobe
eLife 9:e60673.
https://doi.org/10.7554/eLife.60673

Share this article

https://doi.org/10.7554/eLife.60673

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.