Convergence of cortical types and functional motifs in the human mesiotemporal lobe

  1. Casey Paquola  Is a corresponding author
  2. Oualid Benkarim
  3. Jordan DeKraker
  4. Sara Lariviere
  5. Stefan Frässle
  6. Jessica Royer
  7. Shahin Tavakol
  8. Sofie Valk
  9. Andrea Bernasconi
  10. Neda Bernasconi
  11. Ali Khan
  12. Alan C Evans
  13. Adeel Razi
  14. Jonathan Smallwood
  15. Boris Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. University of Western Ontario, Canada
  3. ETH Zurich, Switzerland
  4. Max Planck Institute Leipzig, Germany
  5. Monash University, Australia
  6. University of York, United Kingdom

Abstract

The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organization.

Data availability

Code and data related to this specific project are openly available under https://github.com/MICA-MNI/micaopen/tree/master/cortical_confluence, BigBrain related information are openly available under https://bigbrain.loris.ca/main.php. The human connectome project dataset is available under https://db.humanconnectome.org/.

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    casey.paquola@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Oualid Benkarim

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Lariviere

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5701-1307
  5. Stefan Frässle

    Biomedical, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8011-2226
  6. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Shahin Tavakol

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Sofie Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea Bernasconi

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Neda Bernasconi

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Alan C Evans

    Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Adeel Razi

    Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0779-9439
  14. Jonathan Smallwood

    Department of Psychology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9536-7862

Funding

Canadian HIV Trials Network, Canadian Institutes of Health Research (CIHR FDN-154298)

  • Boris Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants gave informed consent and the study was approved by the local Research Ethics Board of the Montreal Neurological Institute and Hospital (2018-3469).

Copyright

© 2020, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,404
    views
  • 276
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey Paquola
  2. Oualid Benkarim
  3. Jordan DeKraker
  4. Sara Lariviere
  5. Stefan Frässle
  6. Jessica Royer
  7. Shahin Tavakol
  8. Sofie Valk
  9. Andrea Bernasconi
  10. Neda Bernasconi
  11. Ali Khan
  12. Alan C Evans
  13. Adeel Razi
  14. Jonathan Smallwood
  15. Boris Bernhardt
(2020)
Convergence of cortical types and functional motifs in the human mesiotemporal lobe
eLife 9:e60673.
https://doi.org/10.7554/eLife.60673

Share this article

https://doi.org/10.7554/eLife.60673

Further reading

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.

    1. Neuroscience
    Felix Michaud, Ruggiero Francavilla ... Lisa Topolnik
    Research Article

    Alzheimer’s disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.