Visual attention modulates the integration of goal-relevant evidence and not value

  1. Pradyumna Sepulveda  Is a corresponding author
  2. Marius Usher
  3. Ned Davies
  4. Amy A Benson
  5. Pietro Ortoleva
  6. Benedetto De Martino  Is a corresponding author
  1. University College London, United Kingdom
  2. Tel Aviv University, Israel
  3. Princeton University, United States

Abstract

When choosing between options, such as food items presented in plain view, people tend to choose the option they spend longer looking at. The prevailing interpretation is that visual attention increases value. However, in previous studies, 'value' was coupled to a behavioural goal, since subjects had to choose the item they preferred. This makes it impossible to discern if visual attention has an effect on value, or, instead, if attention modulates the information most relevant for the goal of the decision-maker. Here we present the results of two independent studies—a perceptual and a value-based task—that allow us to decouple value from goal-relevant information using specific task-framing. Combining psychophysics with computational modelling, we show that, contrary to the current interpretation, attention does not boost value, but instead it modulates goal-relevant information. This work provides a novel and more general mechanism by which attention interacts with choice.

Data availability

Data and the codes used for this study have been deposited at the Brain Decision Modelling Lab GitHub (https://github.com/BDMLab).

The following data sets were generated

Article and author information

Author details

  1. Pradyumna Sepulveda

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    For correspondence
    p.sepulveda@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0159-6777
  2. Marius Usher

    School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8041-9060
  3. Ned Davies

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Amy A Benson

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8239-5266
  5. Pietro Ortoleva

    Department of Economics and Woodrow Wilson School, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetto De Martino

    Institute Cognitive of Neuroscience, University College London, London, United Kingdom
    For correspondence
    benedettodemartino@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Chilean National Agency for Research and Development (Graduate student scholarship - DOCTORADO BECAS CHILE/2017 - 72180193)

  • Pradyumna Sepulveda

Wellcome Trust (Sir Henry Dale Fellowship (102612 /A/13/Z))

  • Benedetto De Martino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed a consent form and both studies were done following the approval given by the University College London, Division of Psychology and Language Sciences ethics committee (project ID number 1825/003).

Copyright

© 2020, Sepulveda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,905
    views
  • 385
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pradyumna Sepulveda
  2. Marius Usher
  3. Ned Davies
  4. Amy A Benson
  5. Pietro Ortoleva
  6. Benedetto De Martino
(2020)
Visual attention modulates the integration of goal-relevant evidence and not value
eLife 9:e60705.
https://doi.org/10.7554/eLife.60705

Share this article

https://doi.org/10.7554/eLife.60705

Further reading

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.