1. Neuroscience
Download icon

Visual attention modulates the integration of goal-relevant evidence and not value

  1. Pradyumna Sepulveda  Is a corresponding author
  2. Marius Usher
  3. Ned Davies
  4. Amy A Benson
  5. Pietro Ortoleva
  6. Benedetto De Martino  Is a corresponding author
  1. University College London, United Kingdom
  2. Tel Aviv University, Israel
  3. Princeton University, United States
Research Article
  • Cited 7
  • Views 1,005
  • Annotations
Cite this article as: eLife 2020;9:e60705 doi: 10.7554/eLife.60705

Abstract

When choosing between options, such as food items presented in plain view, people tend to choose the option they spend longer looking at. The prevailing interpretation is that visual attention increases value. However, in previous studies, 'value' was coupled to a behavioural goal, since subjects had to choose the item they preferred. This makes it impossible to discern if visual attention has an effect on value, or, instead, if attention modulates the information most relevant for the goal of the decision-maker. Here we present the results of two independent studies—a perceptual and a value-based task—that allow us to decouple value from goal-relevant information using specific task-framing. Combining psychophysics with computational modelling, we show that, contrary to the current interpretation, attention does not boost value, but instead it modulates goal-relevant information. This work provides a novel and more general mechanism by which attention interacts with choice.

Data availability

Data and the codes used for this study have been deposited at the Brain Decision Modelling Lab GitHub (https://github.com/BDMLab).

The following data sets were generated

Article and author information

Author details

  1. Pradyumna Sepulveda

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    For correspondence
    p.sepulveda@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0159-6777
  2. Marius Usher

    School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8041-9060
  3. Ned Davies

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Amy A Benson

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8239-5266
  5. Pietro Ortoleva

    Department of Economics and Woodrow Wilson School, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benedetto De Martino

    Institute Cognitive of Neuroscience, University College London, London, United Kingdom
    For correspondence
    benedettodemartino@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Chilean National Agency for Research and Development (Graduate student scholarship - DOCTORADO BECAS CHILE/2017 - 72180193)

  • Pradyumna Sepulveda

Wellcome Trust (Sir Henry Dale Fellowship (102612 /A/13/Z))

  • Benedetto De Martino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants signed a consent form and both studies were done following the approval given by the University College London, Division of Psychology and Language Sciences ethics committee (project ID number 1825/003).

Reviewing Editor

  1. Valentin Wyart, École normale supérieure, PSL University, INSERM, France

Publication history

  1. Received: July 3, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 17, 2020 (version 1)
  4. Version of Record published: December 8, 2020 (version 2)

Copyright

© 2020, Sepulveda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,005
    Page views
  • 151
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.