A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore

  1. Priscilla S-W Yeung
  2. Christopher E Ing
  3. Megumi Yamashita
  4. Régis Pomès
  5. Murali Prakriya  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States
  2. Hospital for Sick Children, Canada
  3. The Hospital for Sick Children, Canada

Abstract

Sulfur-aromatic interactions occur in the majority of protein structures, yet little is known about their functional roles in ion channels. Here, we describe a novel molecular motif, the M101 gate latch, which is essential for gating of human Orai1 channels via its sulfur-aromatic interactions with the F99 hydrophobic gate. Molecular dynamics simulations of different Orai variants reveal that the gate latch is engaged in open but not in closed channels. In experimental studies, we use metal ion bridges to show that promoting an M101-F99 bond directly activates Orai1, whereas disrupting this interaction triggers channel closure. Mutational analysis demonstrates that methionine at this position has a unique length, flexibility, and chemistry to act as an effective latch for the phenylalanine gate. Because sulfur-aromatic interactions provide additional stabilization compared to purely hydrophobic interactions, we postulate that the six M101-F99 pairs in the hexameric channel represent a substantial energetic contribution to Orai1 activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Priscilla S-W Yeung

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher E Ing

    Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6947-5731
  3. Megumi Yamashita

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Régis Pomès

    Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3068-9833
  5. Murali Prakriya

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    m-prakriya@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0781-4480

Funding

National Institutes of Health (NS057499)

  • Murali Prakriya

National Institutes of Health (F31NS101830)

  • Priscilla S-W Yeung

Canadian Institutes of Health Research (MOP130461)

  • Régis Pomès

National Institutes of Health (GM114210)

  • Murali Prakriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yeung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,308
    views
  • 217
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Priscilla S-W Yeung
  2. Christopher E Ing
  3. Megumi Yamashita
  4. Régis Pomès
  5. Murali Prakriya
(2020)
A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore
eLife 9:e60751.
https://doi.org/10.7554/eLife.60751

Share this article

https://doi.org/10.7554/eLife.60751

Further reading

    1. Structural Biology and Molecular Biophysics
    Mart GF Last, Leoni Abendstein ... Thomas H Sharp
    Tools and Resources

    Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation package that is geared towards both high performance and accessibility, available on GitHub. In this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: particle picking for subtomogram averaging, and generating many-feature segmentations of cellular architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, and rendering functionality, as well as an open repository for trained models at aiscryoet.org, we hope that Ais will help accelerate research and dissemination of data involving cryoET.

    1. Structural Biology and Molecular Biophysics
    Sneha Menon, Subinoy Adhikari, Jagannath Mondal
    Research Article

    The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution. In particular, the presence of fasudil in the solvent either modulates pre-existing states of αS or gives rise to new conformational states of αS, akin to an ensemble-expansion mechanism. The ensembles display strong conformation-dependence in residue-wise interaction with the small molecule. A thermodynamic analysis indicates that small-molecule modulates the structural repertoire of αS by tuning protein backbone entropy, however entropy of the water remains unperturbed. Together, this study sheds light on the intricate interplay between small molecules and IDPs, offering insights into entropic modulation and ensemble expansion as key biophysical mechanisms driving potential therapeutics.