1. Structural Biology and Molecular Biophysics
Download icon

A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore

  1. Priscilla S-W Yeung
  2. Christopher E Ing
  3. Megumi Yamashita
  4. Régis Pomès
  5. Murali Prakriya  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States
  2. Hospital for Sick Children, Canada
  3. The Hospital for Sick Children, Canada
Research Article
  • Cited 8
  • Views 931
  • Annotations
Cite this article as: eLife 2020;9:e60751 doi: 10.7554/eLife.60751

Abstract

Sulfur-aromatic interactions occur in the majority of protein structures, yet little is known about their functional roles in ion channels. Here, we describe a novel molecular motif, the M101 gate latch, which is essential for gating of human Orai1 channels via its sulfur-aromatic interactions with the F99 hydrophobic gate. Molecular dynamics simulations of different Orai variants reveal that the gate latch is engaged in open but not in closed channels. In experimental studies, we use metal ion bridges to show that promoting an M101-F99 bond directly activates Orai1, whereas disrupting this interaction triggers channel closure. Mutational analysis demonstrates that methionine at this position has a unique length, flexibility, and chemistry to act as an effective latch for the phenylalanine gate. Because sulfur-aromatic interactions provide additional stabilization compared to purely hydrophobic interactions, we postulate that the six M101-F99 pairs in the hexameric channel represent a substantial energetic contribution to Orai1 activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Priscilla S-W Yeung

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher E Ing

    Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6947-5731
  3. Megumi Yamashita

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Régis Pomès

    Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3068-9833
  5. Murali Prakriya

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    m-prakriya@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0781-4480

Funding

National Institutes of Health (NS057499)

  • Murali Prakriya

National Institutes of Health (F31NS101830)

  • Priscilla S-W Yeung

Canadian Institutes of Health Research (MOP130461)

  • Régis Pomès

National Institutes of Health (GM114210)

  • Murali Prakriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Publication history

  1. Received: July 6, 2020
  2. Accepted: October 27, 2020
  3. Accepted Manuscript published: October 30, 2020 (version 1)
  4. Version of Record published: November 20, 2020 (version 2)

Copyright

© 2020, Yeung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 931
    Page views
  • 162
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Shan Zhou et al.
    Research Article

    Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.