1. Structural Biology and Molecular Biophysics
Download icon

A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore

  1. Priscilla S-W Yeung
  2. Christopher E Ing
  3. Megumi Yamashita
  4. Régis Pomès
  5. Murali Prakriya  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States
  2. Hospital for Sick Children, Canada
  3. The Hospital for Sick Children, Canada
Research Article
  • Cited 0
  • Views 555
  • Annotations
Cite this article as: eLife 2020;9:e60751 doi: 10.7554/eLife.60751

Abstract

Sulfur-aromatic interactions occur in the majority of protein structures, yet little is known about their functional roles in ion channels. Here, we describe a novel molecular motif, the M101 gate latch, which is essential for gating of human Orai1 channels via its sulfur-aromatic interactions with the F99 hydrophobic gate. Molecular dynamics simulations of different Orai variants reveal that the gate latch is engaged in open but not in closed channels. In experimental studies, we use metal ion bridges to show that promoting an M101-F99 bond directly activates Orai1, whereas disrupting this interaction triggers channel closure. Mutational analysis demonstrates that methionine at this position has a unique length, flexibility, and chemistry to act as an effective latch for the phenylalanine gate. Because sulfur-aromatic interactions provide additional stabilization compared to purely hydrophobic interactions, we postulate that the six M101-F99 pairs in the hexameric channel represent a substantial energetic contribution to Orai1 activation.

Article and author information

Author details

  1. Priscilla S-W Yeung

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher E Ing

    Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6947-5731
  3. Megumi Yamashita

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Régis Pomès

    Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3068-9833
  5. Murali Prakriya

    Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    m-prakriya@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0781-4480

Funding

National Institutes of Health (NS057499)

  • Murali Prakriya

National Institutes of Health (F31NS101830)

  • Priscilla S-W Yeung

Canadian Institutes of Health Research (MOP130461)

  • Régis Pomès

National Institutes of Health (GM114210)

  • Murali Prakriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Publication history

  1. Received: July 6, 2020
  2. Accepted: October 27, 2020
  3. Accepted Manuscript published: October 30, 2020 (version 1)
  4. Version of Record published: November 20, 2020 (version 2)

Copyright

© 2020, Yeung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 555
    Page views
  • 121
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Adam R Blanden et al.
    Research Article

    Missense mutations in the p53 DNA binding domain (DBD) contribute to half of new cancer cases annually. Here we present a thermodynamic model that quantifies and links the major pathways by which mutations inactivate p53. We find that DBD possesses two unusual properties-one of the highest zinc affinities of any eukaryotic protein and extreme instability in the absence of zinc-which are predicted to poise p53 on the cusp of folding/unfolding in the cell, with a major determinant being available zinc concentration. We analyze the 20 most common tumorigenic p53 mutations and find that 80% impair zinc affinity, thermodynamic stability, or both. Biophysical, cell-based, and murine xenograft experiments demonstrate that a synthetic zinc metallochaperone rescues not only mutations that decrease zinc affinity, but also mutations that destabilize DBD without impairing zinc binding. The results suggest that zinc metallochaperones have the capability to treat 120,500 patients annually in the U.S.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Sonya Kumar Bharathkar et al.
    Research Article Updated

    Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here, we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a β-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen-binding fragments (Fabs) and preserves steric accessibility to receptor-binding sites, likely influencing antigen binding and effector functions.