Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bristol, United Kingdom
  3. University of Minnesota Medical School, United States

Abstract

Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons, and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels; a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then – during the later time window, acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.

Data availability

All data generated and analysed during this study are available via the University of Oxford open access data repository (https://ora.ox.ac.uk)

Article and author information

Author details

  1. Filippo Ghezzi

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Andre Marques-Smith

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6879-2858
  3. Paul G Anastasiades

    Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Lyngholm

    MRC Centre for Developmental Neurobiology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3708-0249
  5. Cristiana Vagnoni

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Rowett

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gokul Parameswaran

    MRC Centre for Developmental Neurobiology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Anna Hoerder-Suabedissen

    MRC Centre for Developmental Neurobiology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasushi Nakagawa

    Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-5718
  10. Zoltan Molnar

    MRC Centre for Developmental Neurobiology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6004
  11. Simon J B Butt

    Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    simon.butt@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2399-0102

Funding

Wellcome Trust (215199/Z/19/Z)

  • Filippo Ghezzi

Wellcome Trust (086362/Z/08/Z)

  • Andre Marques-Smith

Medical Research Council (MR/K004387/1)

  • Simon J B Butt

Human Frontiers Science Program Organisation (CDA0023/2008-C)

  • Simon J B Butt

Brain and Behavior Research Foundation (19079)

  • Simon J B Butt

Wellcome Trust (089286/Z/09/Z)

  • Simon J B Butt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and experimental procedures were approved by the University of Oxford local ethical review committee and conducted in accordance with UK Home Office personal and project (70/6767; 30/3052; P861F9BB75) licenses under the Animals (Scientific Procedures) 1986 Act.

Copyright

© 2021, Ghezzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,466
    views
  • 171
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt
(2021)
Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex
eLife 10:e60810.
https://doi.org/10.7554/eLife.60810

Share this article

https://doi.org/10.7554/eLife.60810

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.