Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex
Abstract
Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons, and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels; a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then – during the later time window, acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.
Data availability
All data generated and analysed during this study are available via the University of Oxford open access data repository (https://ora.ox.ac.uk)
Article and author information
Author details
Funding
Wellcome Trust (215199/Z/19/Z)
- Filippo Ghezzi
Wellcome Trust (086362/Z/08/Z)
- Andre Marques-Smith
Medical Research Council (MR/K004387/1)
- Simon J B Butt
Human Frontiers Science Program Organisation (CDA0023/2008-C)
- Simon J B Butt
Brain and Behavior Research Foundation (19079)
- Simon J B Butt
Wellcome Trust (089286/Z/09/Z)
- Simon J B Butt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal care and experimental procedures were approved by the University of Oxford local ethical review committee and conducted in accordance with UK Home Office personal and project (70/6767; 30/3052; P861F9BB75) licenses under the Animals (Scientific Procedures) 1986 Act.
Reviewing Editor
- Sonia Garel, Ecole Normale Superieure, France
Publication history
- Preprint posted: May 13, 2020 (view preprint)
- Received: July 7, 2020
- Accepted: July 9, 2021
- Accepted Manuscript published: July 12, 2021 (version 1)
- Accepted Manuscript updated: July 15, 2021 (version 2)
- Version of Record published: July 21, 2021 (version 3)
Copyright
© 2021, Ghezzi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,084
- Page views
-
- 133
- Downloads
-
- 3
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Relief of ongoing pain is a potent motivator of behavior, directing actions to escape from or reduce potentially harmful stimuli. Whereas endogenous modulation of pain events is well characterized, relatively little is known about the modulation of pain relief and its corresponding neurochemical basis. Here we studied pain modulation during a probabilistic relief-seeking task (a 'wheel of fortune' gambling task), in which people actively or passively received reduction of a tonic thermal pain stimulus. We found that relief perception was enhanced by active decisions and unpredictability, and greater in high novelty-seeking trait individuals, consistent with a model in which relief is tuned by its informational content. We then probed the roles of dopaminergic and opioidergic signaling, both of which are implicated in relief processing, by embedding the task in a double-blinded cross-over design with administration of the dopamine precursor levodopa and the opioid receptor antagonist naltrexone. We found that levodopa enhanced each of these information-specific aspects of relief modulation but no significant effects of the opioidergic manipulation. These results show that dopaminergic signaling has a key role in modulating the perception of pain relief to optimize motivation and behavior.
-
- Genetics and Genomics
- Neuroscience
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.