Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bristol, United Kingdom
  3. Sensae, Germany
  4. University of Minnesota Medical School, United States

Abstract

Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons, and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels; a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then – during the later time window, acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.

Data availability

All data generated and analysed during this study are available via the University of Oxford open access data repository (https://ora.ox.ac.uk)

Article and author information

Author details

  1. Filippo Ghezzi

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Andre Marques-Smith

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6879-2858
  3. Paul G Anastasiades

    Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Lyngholm

    Sensae, 2100 Copenhagen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3708-0249
  5. Cristiana Vagnoni

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Rowett

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gokul Parameswaran

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Anna Hoerder-Suabedissen

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasushi Nakagawa

    Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-5718
  10. Zoltan Molnar

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6004
  11. Simon J B Butt

    Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    simon.butt@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2399-0102

Funding

Wellcome Trust (215199/Z/19/Z)

  • Filippo Ghezzi

Wellcome Trust (086362/Z/08/Z)

  • Andre Marques-Smith

Medical Research Council (MR/K004387/1)

  • Simon J B Butt

Human Frontiers Science Program Organisation (CDA0023/2008-C)

  • Simon J B Butt

Brain and Behavior Research Foundation (19079)

  • Simon J B Butt

Wellcome Trust (089286/Z/09/Z)

  • Simon J B Butt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and experimental procedures were approved by the University of Oxford local ethical review committee and conducted in accordance with UK Home Office personal and project (70/6767; 30/3052; P861F9BB75) licenses under the Animals (Scientific Procedures) 1986 Act.

Reviewing Editor

  1. Sonia Garel, Ecole Normale Superieure, France

Publication history

  1. Preprint posted: May 13, 2020 (view preprint)
  2. Received: July 7, 2020
  3. Accepted: July 9, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Accepted Manuscript updated: July 15, 2021 (version 2)
  6. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Ghezzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,019
    Page views
  • 123
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt
(2021)
Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex
eLife 10:e60810.
https://doi.org/10.7554/eLife.60810

Further reading

    1. Neuroscience
    Guy Avraham, Jordan A Taylor ... Samuel David McDougle
    Research Article

    Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli (CSs) that predict aversive sensations at the cornea (unconditioned stimulus, US). Here we ask if a similar framework could be applied to another type of cerebellar-dependent sensorimotor learning – sensorimotor adaptation. Models of sensorimotor adaptation posit that the introduction of an environmental perturbation results in an error signal that is used to update an internal model of a sensorimotor map for motor planning. Here we take a step towards an integrative account of these two forms of cerebellar-dependent learning, examining the relevance of core concepts from associative learning for sensorimotor adaptation. Using a visuomotor adaptation reaching task, we paired movement-related feedback (US) with neutral auditory or visual contextual cues that served as conditioning stimuli (CSs). Trial-by-trial changes in feedforward movement kinematics exhibited three key signatures of associative learning: Differential conditioning, sensitivity to the CS-US interval, and compound conditioning. Moreover, after compound conditioning, a robust negative correlation was observed between responses to the two elemental CSs of the compound (i.e., overshadowing), consistent with the additivity principle posited by theories of associative learning. The existence of associative learning effects in sensorimotor adaptation provides a proof-of-concept for linking cerebellar-dependent learning paradigms within a common theoretical framework.

    1. Neuroscience
    Yu-Chi Chen, Aurina Arnatkevičiūtė ... Kevin M Aquino
    Research Article

    Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.