Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bristol, United Kingdom
  3. Sensae, Germany
  4. University of Minnesota Medical School, United States

Abstract

Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons, and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels; a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then – during the later time window, acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.

Data availability

All data generated and analysed during this study are available via the University of Oxford open access data repository (https://ora.ox.ac.uk)

Article and author information

Author details

  1. Filippo Ghezzi

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Andre Marques-Smith

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6879-2858
  3. Paul G Anastasiades

    Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Lyngholm

    Sensae, 2100 Copenhagen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3708-0249
  5. Cristiana Vagnoni

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Rowett

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gokul Parameswaran

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Anna Hoerder-Suabedissen

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasushi Nakagawa

    Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-5718
  10. Zoltan Molnar

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6004
  11. Simon J B Butt

    Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    simon.butt@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2399-0102

Funding

Wellcome Trust (215199/Z/19/Z)

  • Filippo Ghezzi

Wellcome Trust (086362/Z/08/Z)

  • Andre Marques-Smith

Medical Research Council (MR/K004387/1)

  • Simon J B Butt

Human Frontiers Science Program Organisation (CDA0023/2008-C)

  • Simon J B Butt

Brain and Behavior Research Foundation (19079)

  • Simon J B Butt

Wellcome Trust (089286/Z/09/Z)

  • Simon J B Butt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sonia Garel, Ecole Normale Superieure, France

Ethics

Animal experimentation: Animal care and experimental procedures were approved by the University of Oxford local ethical review committee and conducted in accordance with UK Home Office personal and project (70/6767; 30/3052; P861F9BB75) licenses under the Animals (Scientific Procedures) 1986 Act.

Version history

  1. Preprint posted: May 13, 2020 (view preprint)
  2. Received: July 7, 2020
  3. Accepted: July 9, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Accepted Manuscript updated: July 15, 2021 (version 2)
  6. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Ghezzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,429
    views
  • 169
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filippo Ghezzi
  2. Andre Marques-Smith
  3. Paul G Anastasiades
  4. Daniel Lyngholm
  5. Cristiana Vagnoni
  6. Alexandra Rowett
  7. Gokul Parameswaran
  8. Anna Hoerder-Suabedissen
  9. Yasushi Nakagawa
  10. Zoltan Molnar
  11. Simon J B Butt
(2021)
Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex
eLife 10:e60810.
https://doi.org/10.7554/eLife.60810

Share this article

https://doi.org/10.7554/eLife.60810

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.