Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex

  1. Xiaoxuan Jia  Is a corresponding author
  2. Ha Hong
  3. James J DiCarlo
  1. Massachusetts Institute of Technology, United States

Abstract

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, in the most useful format (https://github.com/jiaxx/temporal_learning_paper). Datasets from previous studies (IT population dataset (Majaj et al., 2015) and IT plasticity data (Li & DiCarlo, 2010)) are also compiled in the most useful format and saved in the same github location. Original datasets for previous studies can be obtained by directly contacting the corresponding authors of those studies ((Majaj et al., 2015) and (Li & DiCarlo, 2010)). Source data files for figure 2,4,5 and 6 are provided in the github repo as well.

Article and author information

Author details

  1. Xiaoxuan Jia

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    jxiaoxuan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5484-9331
  2. Ha Hong

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James J DiCarlo

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (2-RO1-EY014970-06)

  • James J DiCarlo

Simons Foundation (SCGB [325500])

  • James J DiCarlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas Serre, Brown University, United States

Ethics

Human subjects: All human experiments were done in accordance with the MIT Committee on the Use of Humans as Experimental Subjects (COUHES; the protocol number is 0812003043). We used Amazon Mechanical Turk (MTurk), an online platform where subjects can participate in non-profit psychophysical experiments for payment based on the duration of the task. In the description of each task, it is clearly stated that participation is voluntary and subjects may quit at any time. Subjects can preview each task before agreeing to participate. Subjects will also be informed that anonymity is assured and the researchers will not receive any personal information. MTurk requires subjects to read task descriptions before agreeing to participate. If subjects successfully complete the task, they anonymously receive payment through the MTurk interface.

Version history

  1. Received: July 8, 2020
  2. Accepted: June 10, 2021
  3. Accepted Manuscript published: June 11, 2021 (version 1)
  4. Accepted Manuscript updated: June 17, 2021 (version 2)
  5. Version of Record published: July 30, 2021 (version 3)

Copyright

© 2021, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,698
    views
  • 275
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoxuan Jia
  2. Ha Hong
  3. James J DiCarlo
(2021)
Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex
eLife 10:e60830.
https://doi.org/10.7554/eLife.60830

Share this article

https://doi.org/10.7554/eLife.60830

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.