Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex

  1. Xiaoxuan Jia  Is a corresponding author
  2. Ha Hong
  3. James J DiCarlo
  1. Massachusetts Institute of Technology, United States

Abstract

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, in the most useful format (https://github.com/jiaxx/temporal_learning_paper). Datasets from previous studies (IT population dataset (Majaj et al., 2015) and IT plasticity data (Li & DiCarlo, 2010)) are also compiled in the most useful format and saved in the same github location. Original datasets for previous studies can be obtained by directly contacting the corresponding authors of those studies ((Majaj et al., 2015) and (Li & DiCarlo, 2010)). Source data files for figure 2,4,5 and 6 are provided in the github repo as well.

Article and author information

Author details

  1. Xiaoxuan Jia

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    jxiaoxuan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5484-9331
  2. Ha Hong

    Dept. of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James J DiCarlo

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (2-RO1-EY014970-06)

  • James J DiCarlo

Simons Foundation (SCGB [325500])

  • James J DiCarlo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All human experiments were done in accordance with the MIT Committee on the Use of Humans as Experimental Subjects (COUHES; the protocol number is 0812003043). We used Amazon Mechanical Turk (MTurk), an online platform where subjects can participate in non-profit psychophysical experiments for payment based on the duration of the task. In the description of each task, it is clearly stated that participation is voluntary and subjects may quit at any time. Subjects can preview each task before agreeing to participate. Subjects will also be informed that anonymity is assured and the researchers will not receive any personal information. MTurk requires subjects to read task descriptions before agreeing to participate. If subjects successfully complete the task, they anonymously receive payment through the MTurk interface.

Copyright

© 2021, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,776
    views
  • 285
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoxuan Jia
  2. Ha Hong
  3. James J DiCarlo
(2021)
Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex
eLife 10:e60830.
https://doi.org/10.7554/eLife.60830

Share this article

https://doi.org/10.7554/eLife.60830

Further reading

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.

    1. Cell Biology
    2. Neuroscience
    Anne Drougard, Eric H Ma ... John Andrew Pospisilik
    Research Article

    Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.