Modulation of sleep-courtship balance by nutritional status in Drosophila

  1. Jose M Duhart
  2. Victoria Baccini
  3. Yanan Zhang
  4. Daniel R Machado
  5. Kyunghee Koh  Is a corresponding author
  1. Thomas Jefferson University, United States

Abstract

Sleep is essential but incompatible with other behaviors, and thus sleep drive competes with other motivations. We previously showed Drosophila males balance sleep and courtship via octopaminergic neurons that act upstream of courtship-regulating P1 neurons (Machado et al., 2017). Here we show nutrition modulates the sleep-courtship balance and identify sleep-regulatory neurons downstream of P1 neurons. Yeast-deprived males exhibited attenuated female-induced nighttime sleep loss yet normal daytime courtship, which suggests male flies consider nutritional status in deciding whether the potential benefit of pursuing female partners outweighs the cost of losing sleep. Trans-synaptic tracing and calcium imaging identified dopaminergic neurons projecting to the protocerebral bridge (DA-PB) as postsynaptic partners of P1 neurons. Activation of DA-PB neurons led to reduced sleep in normally fed but not yeast-deprived males. Additional PB-projecting neurons regulated male sleep, suggesting several groups of PB-projecting neurons act downstream of P1 neurons to mediate nutritional modulation of the sleep-courtship balance.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jose M Duhart

    Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Victoria Baccini

    Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanan Zhang

    Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel R Machado

    Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyunghee Koh

    Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States
    For correspondence
    kyunghee.koh@jefferson.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0847-8204

Funding

Pew Charitable Trusts (Latin American Postdoctoral Fellowship)

  • Jose M Duhart

National Institute of Neurological Disorders and Stroke (R01NS109151)

  • Kyunghee Koh

Portuguese Foundation for Science and Technology (SFRH-BD-52321-2013)

  • Daniel R Machado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: July 13, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: October 21, 2020 (version 1)
  4. Version of Record published: November 3, 2020 (version 2)

Copyright

© 2020, Duhart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,276
    views
  • 315
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jose M Duhart
  2. Victoria Baccini
  3. Yanan Zhang
  4. Daniel R Machado
  5. Kyunghee Koh
(2020)
Modulation of sleep-courtship balance by nutritional status in Drosophila
eLife 9:e60853.
https://doi.org/10.7554/eLife.60853

Share this article

https://doi.org/10.7554/eLife.60853

Further reading

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article

    Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.