1. Microbiology and Infectious Disease
Download icon

Defining the function of OmpA in the Rcs stress response

  1. Kilian Dekoninck
  2. Juliette Létoquart
  3. Cédric Laguri
  4. Pascal Demange
  5. Robin Bevernaegie
  6. Jean-Pierre Simorre
  7. Olivia Dehu
  8. Bogdan I Iorga
  9. Benjamin Elias
  10. Seung-Hyun Cho  Is a corresponding author
  11. Jean-Francois Collet  Is a corresponding author
  1. Universite catholique de Louvain, Belgium
  2. Université Grenoble Alpes, CNRS, CEA, France
  3. Université Paul Sabatier, France
  4. Université Grenoble Alpes, France
Research Article
  • Cited 7
  • Views 1,847
  • Annotations
Cite this article as: eLife 2020;9:e60861 doi: 10.7554/eLife.60861

Abstract

OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of b-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal b-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4A, 4B, 5B, 5D and 6 supplement 1.

Article and author information

Author details

  1. Kilian Dekoninck

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5093-1343
  2. Juliette Létoquart

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Cédric Laguri

    IBS, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Demange

    IPBS, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Robin Bevernaegie

    MOST, Universite catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1605-9253
  6. Jean-Pierre Simorre

    Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivia Dehu

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Bogdan I Iorga

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0392-1350
  9. Benjamin Elias

    MOST, Universite catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5037-3313
  10. Seung-Hyun Cho

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    For correspondence
    seung.cho@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5548-4239
  11. Jean-Francois Collet

    de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
    For correspondence
    jean-francois.collet@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8069-7036

Funding

Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture

  • Kilian Dekoninck
  • Robin Bevernaegie

Fonds De La Recherche Scientifique - FNRS

  • Kilian Dekoninck
  • Juliette Létoquart
  • Robin Bevernaegie
  • Olivia Dehu
  • Benjamin Elias
  • Seung-Hyun Cho

FRFS-WELBIO

  • Jean-Francois Collet

FRISBI (ANR-10-INBS-05-02)

  • Cédric Laguri
  • Jean-Pierre Simorre

GRAL

  • Cédric Laguri
  • Jean-Pierre Simorre

CBH-EUR-GS (ANR-17-EURE-0003)

  • Cédric Laguri
  • Jean-Pierre Simorre

Fédération Wallonie-Bruxelles (ARC 17/22-087)

  • Jean-Francois Collet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael T Laub, Massachusetts Institute of Technology, United States

Publication history

  1. Received: July 8, 2020
  2. Accepted: September 26, 2020
  3. Accepted Manuscript published: September 28, 2020 (version 1)
  4. Version of Record published: October 13, 2020 (version 2)

Copyright

© 2020, Dekoninck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,847
    Page views
  • 326
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Anamaria Babosan et al.
    Research Article

    The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that induction of the SOS response is due to nitric oxide (NO) accumulation in presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.

    1. Microbiology and Infectious Disease
    R Christopher D Furniss et al.
    Research Article

    Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.