Alpha oscillations and event related potentials reflect distinct dynamics of attribute construction and evidence accumulation in dietary decision making

  1. Azadeh HajiHosseini  Is a corresponding author
  2. Cendri A Hutcherson
  1. University of Toronto, Canada
  2. University of Toronto Scarborough, Canada

Abstract

How does regulatory focus alter attribute value construction (AVC) and evidence accumulation (EA)? We recorded EEG during food choices while participants responded naturally or regulated their choices by attending to health attributes or decreasing attention to taste attributes. Using a drift diffusion model, we predicted the time course of neural signals associated with AVC and EA. Results suggested that event-related-potentials (ERPs) correlated with the time course of model-predicted taste-attribute signals, with no modulation by regulation. By contrast, suppression of frontal and occipital alpha power correlated with the time course of EA, tracked tastiness according to its goal relevance, and predicted individual variation in successful down-regulation of tastiness. Additionally, an earlier rise in frontal and occipital theta power represented food tastiness more strongly during regulation, and predicted a weaker influence of food tastiness on behaviour. Our findings illuminate how regulation modifies the representation of attributes during the process of evidence accumulation.

Data availability

Raw data are deposited on Open Science Framework, under the project DOI: 10.17605/OSF.IO/EWTVX .Raw Behavioural data: https://osf.io/yp2x9Raw EEG data: https://osf.io/p5wd2

The following data sets were generated

Article and author information

Author details

  1. Azadeh HajiHosseini

    Psychology, University of Toronto, Tororonto, Canada
    For correspondence
    azadeh.haji@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7621-6527
  2. Cendri A Hutcherson

    Department of Psychology, University of Toronto Scarborough, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4441-4809

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-06541)

  • Cendri A Hutcherson

Canada Research Chairs

  • Cendri A Hutcherson

Connaught Fund

  • Cendri A Hutcherson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave written consent for data collection and publication prior to the experiment. The study was approved by the Research Ethics Board of the University of Toronto (Protocol #34322).

Copyright

© 2021, HajiHosseini & Hutcherson

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,494
    views
  • 222
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Azadeh HajiHosseini
  2. Cendri A Hutcherson
(2021)
Alpha oscillations and event related potentials reflect distinct dynamics of attribute construction and evidence accumulation in dietary decision making
eLife 10:e60874.
https://doi.org/10.7554/eLife.60874

Share this article

https://doi.org/10.7554/eLife.60874

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.