1. Structural Biology and Molecular Biophysics
Download icon

Structural basis of αE-catenin-F-actin catch bond behavior

  1. Xiao-Ping Xu
  2. Sabine Pokutta
  3. Megan Torres
  4. Mark F Swift
  5. Dorit Hanein  Is a corresponding author
  6. Niels Volkmann  Is a corresponding author
  7. William I Weis  Is a corresponding author
  1. Scintillon Institute, United States
  2. Stanford University, United States
  3. Stanford University School of Medicine, United States
Research Article
  • Cited 8
  • Views 1,349
  • Annotations
Cite this article as: eLife 2020;9:e60878 doi: 10.7554/eLife.60878

Abstract

Cell-cell and cell-matrix junctions transmit mechanical forces during tissue morphogenesis and homeostasis. α-Catenin links cell-cell adhesion complexes to the actin cytoskeleton, and mechanical load strengthens its binding to F-actin in a direction-sensitive manner. Specifically, optical trap experiments revealed that force promotes a transition between weak and strong actin-bound states. Here, we describe the cryo-electron microscopy structure of the F-actin-bound αE-catenin actin-binding domain, which in solution forms a 5-helix bundle. In the actin-bound structure, the first helix of the bundle dissociates and the remaining four helices and connecting loops rearrange to form the interface with actin. Deletion of the first helix produces strong actin binding in the absence of force, suggesting that the actin-bound structure corresponds to the strong state. Our analysis explains how mechanical force applied to αE-catenin or its homolog vinculin favors the strongly bound state, and the dependence of catch bond strength on the direction of applied force.

Data availability

The coordinates and cryo-EM map of the aE-catenin-F-actin complex have been deposited in the Protein Data Bank, identifiers 6WVT and EMD-21925, respectively

Article and author information

Author details

  1. Xiao-Ping Xu

    Scintillon Institute, Scintillon Institute, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sabine Pokutta

    Department of Structural Biology, Stanford University, Stanford, CA, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan Torres

    Structural Biology and Molecular & Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark F Swift

    Scintillon Institute, Scintillon Institute, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dorit Hanein

    Scintillon Institute, Scintillon Institute, San Diego, United States
    For correspondence
    dorit@scintillon.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6072-4946
  6. Niels Volkmann

    Scintillon Institute, Scintillon Institute, San Diego, United States
    For correspondence
    niels@sbpdiscovery.org
    Competing interests
    The authors declare that no competing interests exist.
  7. William I Weis

    Departments of Structural Biology and of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    weis@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-6150

Funding

National Institutes of Health (GM118326)

  • Dorit Hanein
  • Niels Volkmann
  • William I Weis

National Institutes of Health (GM131747)

  • William I Weis

National Institutes of Health (S10-OD012372)

  • Dorit Hanein

National Institutes of Health (S10-OD026926)

  • Dorit Hanein

Pew Charitable Trusts (864K625)

  • Dorit Hanein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher P Hill, University of Utah School of Medicine, United States

Publication history

  1. Received: July 9, 2020
  2. Accepted: September 9, 2020
  3. Accepted Manuscript published: September 11, 2020 (version 1)
  4. Version of Record published: October 26, 2020 (version 2)

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,349
    Page views
  • 222
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article Updated

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Stijn van Dorp et al.
    Research Article Updated

    The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it toward the plasma membrane to activate Orai and SOCE after store depletion.