Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement

  1. Ying Jie Ma  Is a corresponding author
  2. Jie Zhang
  3. Lihong Song
  4. Dennis V Pedersen
  5. Anna Li
  6. John D. Lambris
  7. Gregers Rom Andersen
  8. Tom Eirik Mollnes
  9. Peter Garred  Is a corresponding author
  1. Rigshospitalet/Copenhagen University, Denmark
  2. Aarhus University, Denmark
  3. University of Pennsylvania, United States
  4. University of Oslo, Norway

Abstract

Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3- depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defence bridging pattern recognition and specific AP activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ying Jie Ma

    Department of Clinical Immunology, Rigshospitalet/Copenhagen University, Copenhagen, Denmark
    For correspondence
    ying.jie.ma@regionh.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4003-2579
  2. Jie Zhang

    Department of Clinical Immunology, Rigshospitalet/Copenhagen University, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4472-3468
  3. Lihong Song

    Department of Clinical Immunology, Rigshospitalet/Copenhagen University, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  4. Dennis V Pedersen

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  5. Anna Li

    Department of Clinical Immunology, Rigshospitalet/Copenhagen University, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  6. John D. Lambris

    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    John D. Lambris, inventor of patents (Patent Number: 9630992) and/or patent applications 426 (Application Number: 15/126,937) that describe the use of complement inhibitors for therapeutic purposes, the founder of Amyndas Pharmaceuticals, which is developing complement inhibitors (i.e., third-generation compstatins) for clinical applications, and the inventor of the compstatin technology licensed to Apellis Pharmaceuticals (i.e., 4[1MeW]7W/POT-4/APL-1 and PEGylated derivatives)..
  7. Gregers Rom Andersen

    Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6292-3319
  8. Tom Eirik Mollnes

    Department of Immunology, University of Oslo, Oslo, Norway
    Competing interests
    No competing interests declared.
  9. Peter Garred

    Department of Clinical Immunology, Rigshospitalet/Copenhagen University, Copenhagen, Denmark
    For correspondence
    peter.garred@regionh.dk
    Competing interests
    No competing interests declared.

Funding

Kirsten og Freddy Johansens Fond (Research fund)

  • Ying Jie Ma

Novo Nordisk (Research fund)

  • Peter Garred

Købmand I Odense Johan og Hanne Weimann Født Seedorffs Legat (Research fund)

  • Ying Jie Ma

Alfred Benzon Foundation (Research fund)

  • Ying Jie Ma
  • Peter Garred

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,116
    views
  • 154
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Jie Ma
  2. Jie Zhang
  3. Lihong Song
  4. Dennis V Pedersen
  5. Anna Li
  6. John D. Lambris
  7. Gregers Rom Andersen
  8. Tom Eirik Mollnes
  9. Peter Garred
(2020)
Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement
eLife 9:e60908.
https://doi.org/10.7554/eLife.60908

Share this article

https://doi.org/10.7554/eLife.60908

Further reading

    1. Immunology and Inflammation
    Alessandra Machado Araujo, Joseph D Dekker ... Haley O Tucker
    Research Article

    We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as ‘B-pDCs’, have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.

    1. Immunology and Inflammation
    Jiansen Lu, Jiahuan Zhang ... Xiao Yu
    Research Article

    Van Gogh-like 2 (Vangl2), a core planar cell polarity component, plays an important role in polarized cellular and tissue morphology induction, growth development, and cancer. However, its role in regulating inflammatory responses remains elusive. Here, we report that Vangl2 is upregulated in patients with sepsis and identify Vangl2 as a negative regulator of The nuclear factor-kappaB (NF-κB) signaling by regulating the protein stability and activation of the core transcription component p65. Mice with myeloid-specific deletion of Vangl2 (Vangl2ΔM) are hypersusceptible to lipopolysaccharide (LPS)-induced septic shock. Vangl2-deficient myeloid cells exhibit enhanced phosphorylation and expression of p65, therefore, promoting the secretion of proinflammatory cytokines after LPS stimulation. Mechanistically, NF-κB signaling-induced-Vangl2 recruits E3 ubiquitin ligase PDLIM2 to catalyze K63-linked ubiquitination on p65, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Taken together, these findings demonstrate Vangl2 as a suppressor of NF-κB-mediated inflammation and provide insights into the crosstalk between autophagy and inflammatory diseases.