Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease

  1. Marlies Noz
  2. Siroon Bekkering
  3. Laszlo Groh
  4. Tim Nielen
  5. Evert Lamfers
  6. Andreas Schlitzer
  7. Saloua El Messaoudi
  8. Niels van Royen
  9. Erik Huys
  10. Frank Preijers
  11. Esther Smeets
  12. Erik Aarntzen
  13. Bowen Zhang
  14. Yang Li
  15. Manita Bremmers
  16. Walter van der Velden
  17. Harry Dolstra
  18. Leo AB Joosten
  19. Marc E Gomes
  20. Mihai G Netea
  21. Niels Peter Riksen  Is a corresponding author
  1. Radboud University Medical Center, Netherlands
  2. Radboud University, Netherlands
  3. Canisius Wilhelmina Hospital, Netherlands
  4. University of Bonn, Germany
  5. Hannover Medical School, Germany
  6. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.

Data availability

RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)under accession number E-MTAB-9399

Article and author information

Author details

  1. Marlies Noz

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Siroon Bekkering

    Internal Medicine, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1149-466X
  3. Laszlo Groh

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Tim Nielen

    Cardiology, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7762-5912
  5. Evert Lamfers

    Cardiology, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5582-3720
  6. Andreas Schlitzer

    University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Saloua El Messaoudi

    Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Niels van Royen

    Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Erik Huys

    Laboratory medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Frank Preijers

    Laboratory medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Esther Smeets

    Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Erik Aarntzen

    Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Bowen Zhang

    Department of Computational Biology for Individualised Infection Medicine, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Yang Li

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  15. Manita Bremmers

    Haematology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Walter van der Velden

    Haematology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  17. Harry Dolstra

    Laboratory medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  18. Leo AB Joosten

    Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6166-9830
  19. Marc E Gomes

    Cardiology, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  20. Mihai G Netea

    Haematology, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Niels Peter Riksen

    Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    For correspondence
    niels.riksen@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9197-8124

Funding

European Unions Horizon 2020 (667837)

  • Leo AB Joosten
  • Mihai G Netea
  • Niels Peter Riksen

Netherlands Organisation for Scientific Research (NWO SPI 94-212)

  • Mihai G Netea

European Commission (833247)

  • Mihai G Netea

ERA-NET (2018T093)

  • Niels Peter Riksen

Netherlands Organisation for Scientic Research (452173113)

  • Siroon Bekkering

Hartstichting (2018T028)

  • Siroon Bekkering

Hartstichting (CVON2018-27)

  • Leo AB Joosten
  • Mihai G Netea
  • Niels Peter Riksen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noriaki Emoto, Kobe Pharmaceutical University, Japan

Ethics

Human subjects: Informed consent was obtained for all participants.The study protocol was approved by the Institutional Review Board Arnhem/Nijmegen, the Netherlands and registered at the ClinicalTrials.gov (NCT03172507).

Version history

  1. Received: July 10, 2020
  2. Accepted: October 27, 2020
  3. Accepted Manuscript published: November 10, 2020 (version 1)
  4. Version of Record published: November 13, 2020 (version 2)

Copyright

© 2020, Noz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,896
    views
  • 266
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marlies Noz
  2. Siroon Bekkering
  3. Laszlo Groh
  4. Tim Nielen
  5. Evert Lamfers
  6. Andreas Schlitzer
  7. Saloua El Messaoudi
  8. Niels van Royen
  9. Erik Huys
  10. Frank Preijers
  11. Esther Smeets
  12. Erik Aarntzen
  13. Bowen Zhang
  14. Yang Li
  15. Manita Bremmers
  16. Walter van der Velden
  17. Harry Dolstra
  18. Leo AB Joosten
  19. Marc E Gomes
  20. Mihai G Netea
  21. Niels Peter Riksen
(2020)
Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease
eLife 9:e60939.
https://doi.org/10.7554/eLife.60939

Share this article

https://doi.org/10.7554/eLife.60939

Further reading

    1. Medicine
    Peigen Chen, Haicheng Chen ... Xing Yang
    Research Article

    Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.