Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses

  1. Pia Ryt-Hansen  Is a corresponding author
  2. Jesper Schak Krog
  3. Solvej Østergaard Breum
  4. Charlotte Kristiane Hjulsager
  5. Anders Gorm Pedersen
  6. Ramona Trebbien
  7. Lars Erik Larsen
  1. University of Copenhagen, Denmark
  2. Statens Serum Institut, Denmark
  3. Technical University of Denmark, Denmark

Abstract

Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV positive submissions, reaching 56% in 2018. Full genome sequences were obtained from 129 swIAV positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.

Data availability

All sequences generated in the study have been uploaded in NCBI GenBank with accession numbers MT666225 - MT667233, and will be released upon acceptance of the manuscript. All analyses of the sequences are included in the manuscripts or in the supplement files and figures.

Article and author information

Author details

  1. Pia Ryt-Hansen

    Department of Health Sciences, Institute for Animal and Veterinary Sciences, University of Copenhagen, Frederiksberg C, Denmark
    For correspondence
    piarh@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4819-6869
  2. Jesper Schak Krog

    Virus & Mikrobiologisk Specialdiagnostik, Statens Serum Institut, Copenhagen S, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Solvej Østergaard Breum

    Virus & Mikrobiologisk Specialdiagnostik, Statens Serum Institut, Copenhagen S, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Charlotte Kristiane Hjulsager

    Virus & Mikrobiologisk Specialdiagnostik, Statens Serum Institut, Copenhagen S, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7557-8876
  5. Anders Gorm Pedersen

    Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramona Trebbien

    Virus & Mikrobiologisk Specialdiagnostik, Statens Serum Institut, Copenhagen S, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Lars Erik Larsen

    Department of Health Sciences, Institute for Animal and Veterinary Sciences, University of Copenhagen, Frederiksberg C, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Novo Nordisk Foundation (NNF19OC0056326)

  • Lars Erik Larsen

IDT Biologika GmbH (SwIAV surveillance)

  • Pia Ryt-Hansen
  • Jesper Schak Krog
  • Solvej Østergaard Breum
  • Charlotte Kristiane Hjulsager
  • Anders Gorm Pedersen
  • Ramona Trebbien
  • Lars Erik Larsen

Danish Veterinary and Food Administration (SwIAV surveillance)

  • Pia Ryt-Hansen
  • Jesper Schak Krog
  • Solvej Østergaard Breum
  • Charlotte Kristiane Hjulsager
  • Anders Gorm Pedersen
  • Ramona Trebbien
  • Lars Erik Larsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ryt-Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,323
    views
  • 245
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pia Ryt-Hansen
  2. Jesper Schak Krog
  3. Solvej Østergaard Breum
  4. Charlotte Kristiane Hjulsager
  5. Anders Gorm Pedersen
  6. Ramona Trebbien
  7. Lars Erik Larsen
(2021)
Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses
eLife 10:e60940.
https://doi.org/10.7554/eLife.60940

Share this article

https://doi.org/10.7554/eLife.60940

Further reading

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.