Adapting non-invasive human recordings along multiple task-axes shows unfolding of spontaneous and over-trained choice

Abstract

Choices rely on a transformation of sensory inputs into motor responses. Using invasive single neuron recordings, the evolution of a choice process has been tracked by projecting population neural responses into state spaces. Here we develop an approach that allows us to recover similar trajectories on a millisecond timescale in non-invasive human recordings. We selectively suppress activity related to three task-axes, relevant and irrelevant sensory inputs and response direction in magnetoencephalography data acquired during context-dependent choices. Recordings from premotor cortex show a progression from processing sensory input to processing the response. In contrast to previous macaque recordings, information related to choice-irrelevant features is represented more weakly than choice-relevant sensory information. To test whether this mechanistic difference between species is caused by extensive overtraining common in non-human primate studies, we trained humans on >20,000 trials of the task. Choice-irrelevant features were still weaker than relevant features in premotor cortex after overtraining.

Data availability

Source data files for figures 2, 3, 4, and are provided.All datasets and codes for reproducing the results will be uploaded to Open Science Framework (OSF) after acceptance.

Article and author information

Author details

  1. Yu Takagi

    Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, United Kingdom
    For correspondence
    yutakagi322@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0503-785X
  2. Laurence Tudor Hunt

    Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8393-8533
  3. Mark W Woolrich

    Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative NeuroImaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Timothy E Behrens

    Wellcome Trust Centre for Neuroimaging, University of Oxford, Oxford, United Kingdom
    Competing interests
    Timothy E Behrens, Senior/Deputy editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0048-1177
  5. Miriam C Klein-Flügge

    Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    For correspondence
    miriam.klein-flugge@psy.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5156-9833

Funding

Japan Society for the Promotion of Science (23118001,23118002)

  • Yu Takagi

Uehara Memorial Foundation

  • Yu Takagi

Sir Henry Wellcome Fellowship (103184/Z/13/Z)

  • Miriam C Klein-Flügge

Wellcome Senior Research Fellowship (104765/Z/14/Z)

  • Timothy E Behrens

Wellcome Principal Research Fellowship (219525/Z/19/Z)

  • Timothy E Behrens

JS McDonnell Foundation award (JSMF220020372)

  • Timothy E Behrens

Wellcome Collaborator award (214314/Z/18/Z)

  • Timothy E Behrens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Matias Palva, University of Helsinki, Finland

Ethics

Human subjects: The study was approved by the University College London (UCL) Research Ethics Committee (reference 1825/005) and all participants gave written informed consent.

Version history

  1. Received: July 13, 2020
  2. Accepted: April 26, 2021
  3. Accepted Manuscript published: May 11, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Takagi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,613
    views
  • 146
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu Takagi
  2. Laurence Tudor Hunt
  3. Mark W Woolrich
  4. Timothy E Behrens
  5. Miriam C Klein-Flügge
(2021)
Adapting non-invasive human recordings along multiple task-axes shows unfolding of spontaneous and over-trained choice
eLife 10:e60988.
https://doi.org/10.7554/eLife.60988

Share this article

https://doi.org/10.7554/eLife.60988

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.