Adapting non-invasive human recordings along multiple task-axes shows unfolding of spontaneous and over-trained choice

Abstract

Choices rely on a transformation of sensory inputs into motor responses. Using invasive single neuron recordings, the evolution of a choice process has been tracked by projecting population neural responses into state spaces. Here we develop an approach that allows us to recover similar trajectories on a millisecond timescale in non-invasive human recordings. We selectively suppress activity related to three task-axes, relevant and irrelevant sensory inputs and response direction in magnetoencephalography data acquired during context-dependent choices. Recordings from premotor cortex show a progression from processing sensory input to processing the response. In contrast to previous macaque recordings, information related to choice-irrelevant features is represented more weakly than choice-relevant sensory information. To test whether this mechanistic difference between species is caused by extensive overtraining common in non-human primate studies, we trained humans on >20,000 trials of the task. Choice-irrelevant features were still weaker than relevant features in premotor cortex after overtraining.

Data availability

Source data files for figures 2, 3, 4, and are provided.All datasets and codes for reproducing the results will be uploaded to Open Science Framework (OSF) after acceptance.

Article and author information

Author details

  1. Yu Takagi

    Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, United Kingdom
    For correspondence
    yutakagi322@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0503-785X
  2. Laurence Tudor Hunt

    Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8393-8533
  3. Mark W Woolrich

    Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative NeuroImaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Timothy E Behrens

    Wellcome Trust Centre for Neuroimaging, University of Oxford, Oxford, United Kingdom
    Competing interests
    Timothy E Behrens, Senior/Deputy editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0048-1177
  5. Miriam C Klein-Flügge

    Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    For correspondence
    miriam.klein-flugge@psy.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5156-9833

Funding

Japan Society for the Promotion of Science (23118001,23118002)

  • Yu Takagi

Uehara Memorial Foundation

  • Yu Takagi

Sir Henry Wellcome Fellowship (103184/Z/13/Z)

  • Miriam C Klein-Flügge

Wellcome Senior Research Fellowship (104765/Z/14/Z)

  • Timothy E Behrens

Wellcome Principal Research Fellowship (219525/Z/19/Z)

  • Timothy E Behrens

JS McDonnell Foundation award (JSMF220020372)

  • Timothy E Behrens

Wellcome Collaborator award (214314/Z/18/Z)

  • Timothy E Behrens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the University College London (UCL) Research Ethics Committee (reference 1825/005) and all participants gave written informed consent.

Copyright

© 2021, Takagi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,662
    views
  • 155
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu Takagi
  2. Laurence Tudor Hunt
  3. Mark W Woolrich
  4. Timothy E Behrens
  5. Miriam C Klein-Flügge
(2021)
Adapting non-invasive human recordings along multiple task-axes shows unfolding of spontaneous and over-trained choice
eLife 10:e60988.
https://doi.org/10.7554/eLife.60988

Share this article

https://doi.org/10.7554/eLife.60988

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.