1. Neuroscience
Download icon

Cortical signatures of precision grip force control in children, adolescents and adults

  1. Mikkel Malling Beck  Is a corresponding author
  2. Meaghan Elizabeth Spedden
  3. Martin J Dietz
  4. Anke Ninija Karabanov
  5. Mark Schram Christensen
  6. Jesper Lundbye-Jensen
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Københavns Universitet, Denmark
Research Article
  • Cited 1
  • Views 447
  • Annotations
Cite this article as: eLife 2021;10:e61018 doi: 10.7554/eLife.61018

Abstract

Human dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control we analyzed electroencephalographic data from 88 individuals (range 8-30y) performing a visually-guided precision grip task using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB). Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups. We further demonstrate greater backward coupling from higher-order to lower-order sensorimotor regions from late adolescence in addition to differential associations between connectivity strength in a premotor-prefrontal network and motor performance for different age groups. We interpret these findings as reflecting greater use of top-down and executive control processes with development. These results expand our understanding of the cortical mechanisms that support dexterous abilities through development.

Data availability

Preprocessed data analyzed in this study have been deposited to Open Science Framework, under the DOI 10.17605/OSF.IO/AP7WS. Source data files have been made available for figure 1D, 4, 5 and 6.

The following data sets were generated

Article and author information

Author details

  1. Mikkel Malling Beck

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    mib@nexs.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8006-2580
  2. Meaghan Elizabeth Spedden

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin J Dietz

    Center for Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0029-6932
  4. Anke Ninija Karabanov

    Department of Nutrition, Exercise and Sports, Københavns Universitet, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1874-393X
  5. Mark Schram Christensen

    Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper Lundbye-Jensen

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danish Ministry of Culture (FPK.2018-0070)

  • Mikkel Malling Beck
  • Jesper Lundbye-Jensen

Nordea-fonden (02-2016-0213)

  • Jesper Lundbye-Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Before enrolling in the study, all participants assented to the study procedures and written informed consent was obtained from participants (> 18 years) and their parents (< 18 years). The study was approved by the regional ethical committee (protocol number: H-17019671).

Reviewing Editor

  1. Tessa Dekker, UCL, United Kingdom

Publication history

  1. Received: July 13, 2020
  2. Accepted: June 4, 2021
  3. Accepted Manuscript published: June 14, 2021 (version 1)
  4. Version of Record published: June 21, 2021 (version 2)

Copyright

© 2021, Beck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 447
    Page views
  • 57
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Gordon H Petty et al.
    Research Article

    Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.

    1. Neuroscience
    Jorrit S Montijn et al.
    Tools and Resources Updated

    Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.