Cortical signatures of precision grip force control in children, adolescents and adults

  1. Mikkel Malling Beck  Is a corresponding author
  2. Meaghan Elizabeth Spedden
  3. Martin J Dietz
  4. Anke Ninija Karabanov
  5. Mark Schram Christensen
  6. Jesper Lundbye-Jensen
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Københavns Universitet, Denmark

Abstract

Human dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control we analyzed electroencephalographic data from 88 individuals (range 8-30y) performing a visually-guided precision grip task using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB). Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups. We further demonstrate greater backward coupling from higher-order to lower-order sensorimotor regions from late adolescence in addition to differential associations between connectivity strength in a premotor-prefrontal network and motor performance for different age groups. We interpret these findings as reflecting greater use of top-down and executive control processes with development. These results expand our understanding of the cortical mechanisms that support dexterous abilities through development.

Data availability

Preprocessed data analyzed in this study have been deposited to Open Science Framework, under the DOI 10.17605/OSF.IO/AP7WS. Source data files have been made available for figure 1D, 4, 5 and 6.

The following data sets were generated

Article and author information

Author details

  1. Mikkel Malling Beck

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    mib@nexs.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8006-2580
  2. Meaghan Elizabeth Spedden

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin J Dietz

    Center for Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0029-6932
  4. Anke Ninija Karabanov

    Department of Nutrition, Exercise and Sports, Københavns Universitet, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1874-393X
  5. Mark Schram Christensen

    Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper Lundbye-Jensen

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danish Ministry of Culture (FPK.2018-0070)

  • Mikkel Malling Beck
  • Jesper Lundbye-Jensen

Nordea-fonden (02-2016-0213)

  • Jesper Lundbye-Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Before enrolling in the study, all participants assented to the study procedures and written informed consent was obtained from participants (> 18 years) and their parents (< 18 years). The study was approved by the regional ethical committee (protocol number: H-17019671).

Copyright

© 2021, Beck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,002
    views
  • 155
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mikkel Malling Beck
  2. Meaghan Elizabeth Spedden
  3. Martin J Dietz
  4. Anke Ninija Karabanov
  5. Mark Schram Christensen
  6. Jesper Lundbye-Jensen
(2021)
Cortical signatures of precision grip force control in children, adolescents and adults
eLife 10:e61018.
https://doi.org/10.7554/eLife.61018

Share this article

https://doi.org/10.7554/eLife.61018

Further reading

    1. Neuroscience
    David Oestreicher, Shashank Chepurwar ... Tina Pangrsic
    Research Article

    To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their CaV1.3 calcium channels. Mutations in the CABP2 gene underlie non-syndromic autosomal recessive hearing loss DFNB93. Besides CaBP2, the structurally related CaBP1 is highly abundant in the IHCs. Here, we investigated how the two CaBPs cooperatively regulate IHC synaptic function. In Cabp1/2 double-knockout mice, we find strongly enhanced CaV1.3 inactivation, slowed recovery from inactivation and impaired sustained exocytosis. Already mild IHC activation further reduces the availability of channels to trigger synaptic transmission and may effectively silence synapses. Spontaneous and sound-evoked responses of spiral ganglion neurons in vivo are strikingly reduced and strongly depend on stimulation rates. Transgenic expression of CaBP2 leads to substantial recovery of IHC synaptic function and hearing sensitivity. We conclude that CaBP1 and 2 act together to suppress voltage- and calcium-dependent inactivation of IHC CaV1.3 channels in order to support sufficient rate of exocytosis and enable fast, temporally precise and indefatigable sound encoding.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.