Cortical signatures of precision grip force control in children, adolescents and adults

  1. Mikkel Malling Beck  Is a corresponding author
  2. Meaghan Elizabeth Spedden
  3. Martin J Dietz
  4. Anke Ninija Karabanov
  5. Mark Schram Christensen
  6. Jesper Lundbye-Jensen
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Københavns Universitet, Denmark

Abstract

Human dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control we analyzed electroencephalographic data from 88 individuals (range 8-30y) performing a visually-guided precision grip task using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB). Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups. We further demonstrate greater backward coupling from higher-order to lower-order sensorimotor regions from late adolescence in addition to differential associations between connectivity strength in a premotor-prefrontal network and motor performance for different age groups. We interpret these findings as reflecting greater use of top-down and executive control processes with development. These results expand our understanding of the cortical mechanisms that support dexterous abilities through development.

Data availability

Preprocessed data analyzed in this study have been deposited to Open Science Framework, under the DOI 10.17605/OSF.IO/AP7WS. Source data files have been made available for figure 1D, 4, 5 and 6.

The following data sets were generated

Article and author information

Author details

  1. Mikkel Malling Beck

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    mib@nexs.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8006-2580
  2. Meaghan Elizabeth Spedden

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin J Dietz

    Center for Functionally Integrative Neuroscience, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0029-6932
  4. Anke Ninija Karabanov

    Department of Nutrition, Exercise and Sports, Københavns Universitet, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1874-393X
  5. Mark Schram Christensen

    Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper Lundbye-Jensen

    Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.

Funding

Danish Ministry of Culture (FPK.2018-0070)

  • Mikkel Malling Beck
  • Jesper Lundbye-Jensen

Nordea-fonden (02-2016-0213)

  • Jesper Lundbye-Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Before enrolling in the study, all participants assented to the study procedures and written informed consent was obtained from participants (> 18 years) and their parents (< 18 years). The study was approved by the regional ethical committee (protocol number: H-17019671).

Copyright

© 2021, Beck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,025
    views
  • 156
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mikkel Malling Beck
  2. Meaghan Elizabeth Spedden
  3. Martin J Dietz
  4. Anke Ninija Karabanov
  5. Mark Schram Christensen
  6. Jesper Lundbye-Jensen
(2021)
Cortical signatures of precision grip force control in children, adolescents and adults
eLife 10:e61018.
https://doi.org/10.7554/eLife.61018

Share this article

https://doi.org/10.7554/eLife.61018

Further reading

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.