Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory

Abstract

Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA also impaired memory. STK11 and C-FOS activation were independent of one another. These data suggest key roles for Stk11 and Fos in CTA long-term memory formation, dependent at least partly through convergent action on BLApn intrinsic excitability.

Data availability

Sequencing data was uploaded to GEO (accession number: GSE138522).

The following data sets were generated

Article and author information

Author details

  1. David Levitan

    Biology, Brandeis University, Waltham, United States
    For correspondence
    levitand@brandeis.edu
    Competing interests
    No competing interests declared.
  2. Chenghao Liu

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Tracy Yang

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2437-9257
  4. Yasuyuki Shima

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Jian-You Lin

    Psychology, Volen Center for Complex Systems, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. Joseph Wachutka

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Yasmin Marrero

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Ramin Ali Marandi Ghoddousi

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  9. Eduardo da Veiga Beltrame

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  10. Troy A Richter

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  11. Donald B Katz

    Department Of Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-6063
  12. Sacha B Nelson

    Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0108-8599

Funding

National Institute on Deafness and Other Communication Disorders (DC006666)

  • Donald B Katz

National Institute of Neurological Disorders and Stroke (NS109916)

  • Sacha B Nelson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Brandeis University Institutional Animal Care and Use Committee (IACUC, Protocol #20002) in accordance with NIH guidelines.

Copyright

© 2020, Levitan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,487
    views
  • 198
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Levitan
  2. Chenghao Liu
  3. Tracy Yang
  4. Yasuyuki Shima
  5. Jian-You Lin
  6. Joseph Wachutka
  7. Yasmin Marrero
  8. Ramin Ali Marandi Ghoddousi
  9. Eduardo da Veiga Beltrame
  10. Troy A Richter
  11. Donald B Katz
  12. Sacha B Nelson
(2020)
Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory
eLife 9:e61036.
https://doi.org/10.7554/eLife.61036

Share this article

https://doi.org/10.7554/eLife.61036

Further reading

    1. Neuroscience
    Friedrich Schuessler, Francesca Mastrogiuseppe ... Omri Barak
    Research Article

    The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network’s output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.