Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory

Abstract

Conditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene Fos and Stk11, a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning. Deletion of Stk11 in BLApn blocked memory prior to training, but not following it and increased neuronal excitability. Conversely, BLApn had reduced excitability following CTA. BLApn knockout of a second learning-related gene, Fos, also increased excitability and impaired learning. Independently increasing BLApn excitability chemogenetically during CTA also impaired memory. STK11 and C-FOS activation were independent of one another. These data suggest key roles for Stk11 and Fos in CTA long-term memory formation, dependent at least partly through convergent action on BLApn intrinsic excitability.

Data availability

Sequencing data was uploaded to GEO (accession number: GSE138522).

The following data sets were generated

Article and author information

Author details

  1. David Levitan

    Biology, Brandeis University, Waltham, United States
    For correspondence
    levitand@brandeis.edu
    Competing interests
    No competing interests declared.
  2. Chenghao Liu

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Tracy Yang

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2437-9257
  4. Yasuyuki Shima

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  5. Jian-You Lin

    Psychology, Volen Center for Complex Systems, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  6. Joseph Wachutka

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  7. Yasmin Marrero

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  8. Ramin Ali Marandi Ghoddousi

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  9. Eduardo da Veiga Beltrame

    Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  10. Troy A Richter

    Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  11. Donald B Katz

    Department Of Psychology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8444-6063
  12. Sacha B Nelson

    Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, United States
    For correspondence
    nelson@brandeis.edu
    Competing interests
    Sacha B Nelson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0108-8599

Funding

National Institute on Deafness and Other Communication Disorders (DC006666)

  • Donald B Katz

National Institute of Neurological Disorders and Stroke (NS109916)

  • Sacha B Nelson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mary Kay Lobo, University of Maryland, United States

Ethics

Animal experimentation: All procedures were approved by the Brandeis University Institutional Animal Care and Use Committee (IACUC, Protocol #20002) in accordance with NIH guidelines.

Version history

  1. Received: July 14, 2020
  2. Accepted: August 4, 2020
  3. Accepted Manuscript published: August 11, 2020 (version 1)
  4. Version of Record published: August 24, 2020 (version 2)

Copyright

© 2020, Levitan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,395
    views
  • 193
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Levitan
  2. Chenghao Liu
  3. Tracy Yang
  4. Yasuyuki Shima
  5. Jian-You Lin
  6. Joseph Wachutka
  7. Yasmin Marrero
  8. Ramin Ali Marandi Ghoddousi
  9. Eduardo da Veiga Beltrame
  10. Troy A Richter
  11. Donald B Katz
  12. Sacha B Nelson
(2020)
Deletion of Stk11 and Fos in mouse BLA projection neurons alters intrinsic excitability and impairs formation of long-term aversive memory
eLife 9:e61036.
https://doi.org/10.7554/eLife.61036

Share this article

https://doi.org/10.7554/eLife.61036

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.