Neural mechanisms underlying expectation-dependent inhibition of distracting information

  1. Dirk van Moorselaar  Is a corresponding author
  2. Eline Lampers
  3. Elisa Cordesius
  4. Heleen A Slagter
  1. Vrije Universiteit Amsterdam, Netherlands
  2. University of Amsterdam, Netherlands

Abstract

Predictions based on learned statistical regularities in the visual worldhave been shown to facilitate attention and goal-directed behavior by sharpening the sensory representation of goal-relevant stimuli in advance. Yet, how the brain learns to ignore predictable goal-irrelevant or distracting information is unclear.Here, we used EEG anda visual search task in which the predictability of a distractor’s location and/or spatial frequency was manipulated to determine how spatial and feature distractor expectations are neurally implemented and reduce distractor interference. We find that expected distractor features could not only be decoded pre-stimulus, but their representation differed from the representation of that same feature when part of the target. Spatial distractor expectations did not induce changes in preparatory neural activity, but a strongly reduced Pd, an ERP index of inhibition. These results demonstrate that neural effects of statistical learning critically depend on the task relevance and dimension (spatial, feature) of predictions

Data availability

All data are publicly available on OSF . Analysis scripts can be downloaded via GitHub

Article and author information

Author details

  1. Dirk van Moorselaar

    Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    dirkvanmoorselaar@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0491-1317
  2. Eline Lampers

    Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisa Cordesius

    Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Heleen A Slagter

    Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4180-1483

Funding

H2020 European Research Council (679399)

  • Heleen A Slagter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joy Geng

Ethics

Human subjects: The ethical committee of the Department of Psychology of the University of Amsterdam approved the study (2018-BC-9051), which was conformed to the Declaration of Helsinki.

Version history

  1. Received: July 14, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Version of Record published: December 23, 2020 (version 2)

Copyright

© 2020, van Moorselaar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,726
    views
  • 239
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dirk van Moorselaar
  2. Eline Lampers
  3. Elisa Cordesius
  4. Heleen A Slagter
(2020)
Neural mechanisms underlying expectation-dependent inhibition of distracting information
eLife 9:e61048.
https://doi.org/10.7554/eLife.61048

Share this article

https://doi.org/10.7554/eLife.61048

Further reading

    1. Neuroscience
    Ladan Shahshahani, Maedbh King ... Jörn Diedrichsen
    Research Article

    Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.

    1. Neuroscience
    Petteri Stenroos, Isabelle Guillemain ... Emmanuel L Barbier
    Research Article

    In patients suffering absence epilepsy, recurring seizures can significantly decrease their quality of life and lead to yet untreatable comorbidities. Absence seizures are characterized by spike-and-wave discharges on the electroencephalogram associated with a transient alteration of consciousness. However, it is still unknown how the brain responds to external stimuli during and outside of seizures. This study aimed to investigate responsiveness to visual and somatosensory stimulation in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established rat model for absence epilepsy. Animals were imaged under non-curarized awake state using a quiet, zero echo time, functional magnetic resonance imaging (fMRI) sequence. Sensory stimulations were applied during interictal and ictal periods. Whole-brain hemodynamic responses were compared between these two states. Additionally, a mean-field simulation model was used to explain the changes of neural responsiveness to visual stimulation between states. During a seizure, whole-brain responses to both sensory stimulations were suppressed and spatially hindered. In the cortex, hemodynamic responses were negatively polarized during seizures, despite the application of a stimulus. The mean-field simulation revealed restricted propagation of activity due to stimulation and agreed well with fMRI findings. Results suggest that sensory processing is hindered or even suppressed by the occurrence of an absence seizure, potentially contributing to decreased responsiveness during this absence epileptic process.