EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis

Abstract

Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophage exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of EKLF/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together these studies provide a detailed perspective on the importance of EKLF in establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.

Data availability

Data deposite in GEO, accession number: GSE156153, Source data are included for Figures 1,3,4,5,6.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kaustav Mukherjee

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li Xue

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Antanas Planutis

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Merlin Nithya Gnanapragasam

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Chess

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James J Bieker

    Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, United States
    For correspondence
    james.bieker@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5128-7476

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK102260)

  • James J Bieker

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK121671)

  • James J Bieker

National Institute of Diabetes and Digestive and Kidney Diseases (K01 DK115686)

  • Merlin Nithya Gnanapragasam

Black Family Stem Cell Institute (Postdoctoral award)

  • Kaustav Mukherjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-1911) of the Mount Sinai School of Medicine.

Copyright

© 2021, Mukherjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,579
    views
  • 205
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kaustav Mukherjee
  2. Li Xue
  3. Antanas Planutis
  4. Merlin Nithya Gnanapragasam
  5. Andrew Chess
  6. James J Bieker
(2021)
EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis
eLife 10:e61070.
https://doi.org/10.7554/eLife.61070

Share this article

https://doi.org/10.7554/eLife.61070

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Simon Rethemeier, Sonja Fritzsche ... Vera S Hunnekuhl
    Research Article

    The insect brain and the timing of its development underwent evolutionary adaptations. However, little is known about the underlying developmental processes. The central complex of the brain is an excellent model to understand neural development and divergence. It is produced in large parts by type II neuroblasts, which produce intermediate progenitors, another type of cycling precursor, to increase their neural progeny. Type II neuroblasts lineages are believed to be conserved among insects, but little is known on their molecular characteristics in insects other than flies. Tribolium castaneum has emerged as a model for brain development and evolution. However, type II neuroblasts have so far not been studied in this beetle. We created a fluorescent enhancer trap marking expression of Tc-fez/earmuff, a key marker for intermediate progenitors. Using combinatorial labeling of further markers, including Tc-pointed, we characterized embryonic type II neuroblast lineages. Intriguingly, we found nine lineages per hemisphere in the Tribolium embryo while Drosophila produces only eight per brain hemisphere. These embryonic lineages are significantly larger in Tribolium than they are in Drosophila and contain more intermediate progenitors. Finally, we mapped these lineages to the domains of head patterning genes. Notably, Tc-otd is absent from all type II neuroblasts and intermediate progenitors, whereas Tc-six3 marks an anterior subset of the type II lineages. Tc-six4 specifically marks the territory where anterior-medial type II neuroblasts differentiate. In conclusion, we identified a conserved pattern of gene expression in holometabolan central complex forming type II neuroblast lineages, and conserved head patterning genes emerged as new candidates for conferring spatial identity to individual lineages. The higher number and greater lineage size of the embryonic type II neuroblasts in the beetle correlate with a previously described embryonic phase of central complex formation. These findings stipulate further research on the link between stem cell activity and temporal and structural differences in central complex development.

    1. Cell Biology
    2. Developmental Biology
    Jeet H Patel, Mary C Mullins
    Insight

    Disease-causing mutations in the signaling protein BMP4 impair its secretion, but only when it is made as a homodimer.