1. Cell Biology
  2. Developmental Biology
Download icon

Drosophila Hedgehog can act as a morphogen in the absence of regulated Ci processing

  1. Jamie C Little
  2. Elisa Garcia-Garcia
  3. Amanda Sul
  4. Daniel Kalderon  Is a corresponding author
  1. Columbia University, United States
Research Article
  • Cited 0
  • Views 586
  • Annotations
Cite this article as: eLife 2020;9:e61083 doi: 10.7554/eLife.61083

Abstract

Extracellular Hedgehog (Hh) proteins induce transcriptional changes in target cells by inhibiting the proteolytic processing of full-length Drosophila Ci or mammalian Gli proteins to nuclear transcriptional repressors and by activating the full-length Ci or Gli proteins. We used Ci variants expressed at physiological levels to investigate the contributions of these mechanisms to dose-dependent Hh signaling in Drosophila wing imaginal discs. Ci variants that cannot be processed supported a normal pattern of graded target gene activation and the development of adults with normal wing morphology, when supplemented by constitutive Ci repressor, showing that Hh can signal normally in the absence of regulated processing. The processing-resistant Ci variants were also significantly activated in the absence of Hh by elimination of Cos2, likely acting through binding the CORD domain of Ci, or PKA, revealing separate inhibitory roles of these two components in addition to their well-established roles in promoting Ci processing.

Article and author information

Author details

  1. Jamie C Little

    Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elisa Garcia-Garcia

    Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda Sul

    Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Kalderon

    Biological Sciences, Columbia University, New York, United States
    For correspondence
    ddk1@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2149-0673

Funding

National Institutes of Health (RO1 GM041815)

  • Daniel Kalderon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Publication history

  1. Received: July 15, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: October 21, 2020 (version 1)
  4. Version of Record published: November 20, 2020 (version 2)

Copyright

© 2020, Little et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 586
    Page views
  • 120
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Isabelle C Kos-Braun et al.
    Feature Article Updated

    Core facilities are an effective way of making expensive experimental equipment available to a large number of researchers, and are thus well placed to contribute to efforts to promote good research practices. Here we report the results of a survey that asked core facilities in Europe about their approaches to the promotion of good research practices, and about their interactions with users from the first contact to the publication of the results. Based on 253 responses we identified four ways that good research practices could be encouraged: (i) motivating users to follow the advice and procedures for best research practice; (ii) providing clear guidance on data-management practices; (iii) improving communication along the whole research process; and (iv) clearly defining the responsibilities of each party.

    1. Cell Biology
    2. Physics of Living Systems
    Andrea Serra-Marques et al.
    Research Article Updated

    Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.