Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A

  1. Antonietta Franco
  2. Xiawei Dang
  3. Emily K Walton
  4. Joshua N Ho
  5. Barbara Zablocka
  6. Cindy Ly
  7. Timothy M Miller
  8. Robert H Baloh
  9. Michael E Shy
  10. Andrew S Yoo
  11. Gerald W Dorn II  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Mossakowski Medical Research Centre, Poland
  3. Cedars-Sinai Medical Center, United States
  4. Carver College of Medicine, University of Iowa, United States

Abstract

Charcot-Marie-Tooth disease type 2A (CMT2A) is an untreatable childhood peripheral neuropathy caused by mutations of the mitochondrial fusion protein, mitofusin (MFN) 2. Here, pharmacological activation of endogenous normal mitofusins overcame dominant inhibitory effects of CMT2A mutants in reprogrammed human patient motor neurons, reversing hallmark mitochondrial stasis and fragmentation independent of causal MFN2 mutation. In mice expressing human MFN2 T105M, intermittent mitofusin activation with a small molecule, MiM111, normalized CMT2A neuromuscular dysfunction, reversed pre-treatment axon and skeletal myocyte atrophy, and enhanced axon regrowth by increasing mitochondrial transport within peripheral axons and promoting in vivo mitochondrial localization to neuromuscular junctional synapses. MiM111-treated MFN2 T105M mouse neurons exhibited accelerated primary outgrowth and greater post-axotomy regrowth, linked to enhanced mitochondrial motility. MiM111 is the first pre-clinical candidate for CMT2A.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Antonietta Franco

    Department of Internal Medicine, Pharmacogenomics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5487-1800
  2. Xiawei Dang

    Department of Internal Medicine, Pharmacogenomics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0343-7107
  3. Emily K Walton

    Department of Internal Medicine, Pharmacogenomics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Joshua N Ho

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Barbara Zablocka

    Molecular Biology Unit, Mossakowski Medical Research Centre, Warsaw, Poland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2204-5184
  6. Cindy Ly

    Department of Neurology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Timothy M Miller

    Department of Neurology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Robert H Baloh

    Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Michael E Shy

    Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  10. Andrew S Yoo

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0304-3247
  11. Gerald W Dorn II

    Department of Internal Medicine, Pharmacogenomics, Washington University School of Medicine, St Louis, United States
    For correspondence
    gdorn@wustl.edu
    Competing interests
    Gerald W Dorn II, G.W.D. is an inventor on patent applications PCT/US18/028514 submitted by Washington University and PCT/US19/46356 submitted by Mitochondria Emotion, Inc that cover the use of small molecule mitofusin agonists to treat chronic neurodegenerative diseases, and is a founder of Mitochondria in Motion, Inc., a Saint Louis based biotech R&D company focused on enhancing mitochondrial trafficking and fitness in neurodegenerative diseases..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8995-1624

Funding

NIH (R35HL135736)

  • Gerald W Dorn II

NIH (R41NS113642)

  • Gerald W Dorn II

NIH (R41NS115184)

  • Gerald W Dorn II

Muscular Dystrophy Association (628906)

  • Gerald W Dorn II

McDonnell Center for Cellular and Molecular (Neurobiology Postdoctoral Fellowship)

  • Antonietta Franco

Harrington Discovery Institute (Scholar-Innovator awardee)

  • Gerald W Dorn II

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by Washington University in St. Louis School of Medicine Animal Studies Committee; IACUC protocol number 19-0910, Exp:12/16/2022 (Gerald Dorn, PI).

Copyright

© 2020, Franco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,103
    views
  • 530
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonietta Franco
  2. Xiawei Dang
  3. Emily K Walton
  4. Joshua N Ho
  5. Barbara Zablocka
  6. Cindy Ly
  7. Timothy M Miller
  8. Robert H Baloh
  9. Michael E Shy
  10. Andrew S Yoo
  11. Gerald W Dorn II
(2020)
Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A
eLife 9:e61119.
https://doi.org/10.7554/eLife.61119

Share this article

https://doi.org/10.7554/eLife.61119

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.