Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity

  1. Asuka Takeishi
  2. Jihye Yeon
  3. Nathan Harris
  4. Wenxing Yang
  5. Piali Sengupta  Is a corresponding author
  1. RIKEN, Japan
  2. Brandeis University, United States
  3. West China School of Basic Medical Sciences and Forensic Medicine, China

Abstract

Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16 FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for all behavioral and imaging data have been provided in Excel spreadsheets with data for individual figure panels in separate tabs. Two spreadsheets are provided for main and supplementary figures

Article and author information

Author details

  1. Asuka Takeishi

    Center for Brain Science, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
  2. Jihye Yeon

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Nathan Harris

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  4. Wenxing Yang

    Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, China
    Competing interests
    No competing interests declared.
  5. Piali Sengupta

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    sengupta@brandeis.edu
    Competing interests
    Piali Sengupta, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7468-0035

Funding

National Institute of General Medical Sciences (R35 GM122463)

  • Piali Sengupta

National Institute of Neurological Disorders and Stroke (T32 NS007292)

  • Nathan Harris

National Institute of Neurological Disorders and Stroke (F32 NS112453)

  • Nathan Harris

RIKEN (H28-1058)

  • Asuka Takeishi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Takeishi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,448
    views
  • 547
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asuka Takeishi
  2. Jihye Yeon
  3. Nathan Harris
  4. Wenxing Yang
  5. Piali Sengupta
(2020)
Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity
eLife 9:e61167.
https://doi.org/10.7554/eLife.61167

Share this article

https://doi.org/10.7554/eLife.61167

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.