Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity

  1. Asuka Takeishi
  2. Jihye Yeon
  3. Nathan Harris
  4. Wenxing Yang
  5. Piali Sengupta  Is a corresponding author
  1. RIKEN, Japan
  2. Brandeis University, United States
  3. West China School of Basic Medical Sciences and Forensic Medicine, China

Abstract

Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16 FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for all behavioral and imaging data have been provided in Excel spreadsheets with data for individual figure panels in separate tabs. Two spreadsheets are provided for main and supplementary figures

Article and author information

Author details

  1. Asuka Takeishi

    Center for Brain Science, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
  2. Jihye Yeon

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  3. Nathan Harris

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  4. Wenxing Yang

    Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, China
    Competing interests
    No competing interests declared.
  5. Piali Sengupta

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    sengupta@brandeis.edu
    Competing interests
    Piali Sengupta, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7468-0035

Funding

National Institute of General Medical Sciences (R35 GM122463)

  • Piali Sengupta

National Institute of Neurological Disorders and Stroke (T32 NS007292)

  • Nathan Harris

National Institute of Neurological Disorders and Stroke (F32 NS112453)

  • Nathan Harris

RIKEN (H28-1058)

  • Asuka Takeishi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: July 16, 2020
  2. Accepted: October 18, 2020
  3. Accepted Manuscript published: October 19, 2020 (version 1)
  4. Version of Record published: November 5, 2020 (version 2)

Copyright

© 2020, Takeishi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,173
    Page views
  • 503
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asuka Takeishi
  2. Jihye Yeon
  3. Nathan Harris
  4. Wenxing Yang
  5. Piali Sengupta
(2020)
Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity
eLife 9:e61167.
https://doi.org/10.7554/eLife.61167

Share this article

https://doi.org/10.7554/eLife.61167

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.