Single caudate neurons encode temporally discounted value for formulating motivation for action

  1. Yukiko Hori
  2. Koki Mimura
  3. Yuji Nagai
  4. Atsushi Fujimoto
  5. Kei Oyama
  6. Erika Kikuchi
  7. Ken-ichi Inoue
  8. Masahiko Takada
  9. Tetsuya Suhara
  10. Barry J Richmond
  11. Takafumi Minamimoto  Is a corresponding author
  1. National Institutes for Quantum and Radiological Science and Technology, Japan
  2. Kyoto University, Japan
  3. NIMH/NIH/DHHS, Bethesda, MD 20814, USA, United States

Abstract

The term ‘temporal discounting’ describes both choice preferences and motivation for delayed rewards. Here we show that neuronal activity in the dorsal part of the primate caudate head (dCDh) signals the temporally discounted value needed to compute the motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which visual cues indicated the forthcoming size and delay duration before reward. Single dCDh neurons represented the temporally discounted value without reflecting changes in the animal’s physiological state. Bilateral pharmacological or chemogenetic inactivation of dCDh markedly distorted the normal task performance based on the integration of reward size and delay, but did not affect the task performance for different reward sizes without delay. These results suggest that dCDh is involved in encoding the integrated multidimensional information critical for motivation.

Data availability

We provide source data to reproduce the main results of the paper presented in Figures 1, 5, 7 and 8.

Article and author information

Author details

  1. Yukiko Hori

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1023-9587
  2. Koki Mimura

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuji Nagai

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7005-0749
  4. Atsushi Fujimoto

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1621-2003
  5. Kei Oyama

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Erika Kikuchi

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Ken-ichi Inoue

    Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Masahiko Takada

    Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tetsuya Suhara

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Barry J Richmond

    Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD 20814, USA, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8234-1540
  11. Takafumi Minamimoto

    Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
    For correspondence
    minamimoto.takafumi@qst.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4305-0174

Funding

Japan Society for the Promotion of Science (JP18H04037,JP20H05955)

  • Takafumi Minamimoto

Japan Agency for Medical Research and Development (JP20dm0107146)

  • Takafumi Minamimoto

Japan Agency for Medical Research and Development (JP20dm0207077)

  • Masahiko Takada

Japan Agency for Medical Research and Development (JP20dm0307021)

  • Ken-ichi Inoue

National Institute of Mental Health (Annual Report ZIAMH-2619)

  • Barry J Richmond

Primate Research Institute, Kyoto University (2020-A-6)

  • Takafumi Minamimoto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and experimental procedures were approved by the National Institutes for Quantum and Radiological Science and Technology (11-1038-11) and by the Animal Care and Use Committee of the National Institute of Mental Health (Annual Report ZIAMH002619), and were in accordance with the Institute of Laboratory Animal Research Guide for the Care and Use of Laboratory Animals.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 926
    views
  • 148
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yukiko Hori
  2. Koki Mimura
  3. Yuji Nagai
  4. Atsushi Fujimoto
  5. Kei Oyama
  6. Erika Kikuchi
  7. Ken-ichi Inoue
  8. Masahiko Takada
  9. Tetsuya Suhara
  10. Barry J Richmond
  11. Takafumi Minamimoto
(2021)
Single caudate neurons encode temporally discounted value for formulating motivation for action
eLife 10:e61248.
https://doi.org/10.7554/eLife.61248

Share this article

https://doi.org/10.7554/eLife.61248

Further reading

    1. Neuroscience
    Juan Carlos Boffi, Brice Bathellier ... Robert Prevedel
    Research Article

    Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.

    1. Neuroscience
    Selene Seoyun Lee, Livia Civitelli, Laura Parkkinen
    Research Article

    The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson’s disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the ‘model’ SAA fibrils. We report that the brain-derived αSyn fibrils show distinct biochemical profiles, which were not replicated in the corresponding SAA fibrils. Furthermore, the brain-derived αSyn fibrils from all synucleinopathies displayed a mixture of ‘straight’ and ‘twisted’ microscopic structures. However, the PD, PDD, and DLB SAA fibrils had a ’straight’ structure, whereas MSA SAA fibrils showed a ‘twisted’ structure. Finally, the brain-derived αSyn fibrils from all four synucleinopathies were phosphorylated (S129). Interestingly, phosphorylated αSyn were carried over to the PDD and DLB SAA fibrils. Our findings demonstrate the limitation of the SAA fibrils modeling the brain-derived αSyn fibrils and pay attention to the necessity of deepening the understanding of the SAA fibrillation methodology.