Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology

Abstract

The functional importance of many non-coding RNAs (ncRNAs) generated by repetitive elements and their connection with pathologic processes remains elusive. B2 RNAs, a class of ncRNAs of the B2 family of SINE repeats, mediate through their processing the transcriptional activation of various genes in response to stress. Here we show that this response is dysfunctional during amyloid beta toxicity and pathology in the mouse hippocampus due to increased levels of B2 RNA processing, leading to constitutively elevated B2 RNA target gene expression and high Trp53 levels. Evidence indicates that Hsf1, a master regulator of stress response, mediates B2 RNA processing in hippocampal cells, and is activated during amyloid toxicity, accelerating the processing of SINE RNAs and gene hyper-activation. Our study reveals that in mouse, SINE RNAs constitute a novel pathway deregulated in amyloid beta pathology, with potential implications for similar cases in the human brain, such as Alzheimer's disease (AD).

Data availability

Short and long-RNA-seq data have been deposited to GEO with access number GSE149243.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yubo Cheng

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke Saville

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-1268
  3. Babita Gollen

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Isaac

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Abel Belay

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Jogender Mehla

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Kush Patel

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Nehal Thakor

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Majid H Mohajerani

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0964-2977
  10. Athanasios Zovoilis

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    For correspondence
    athanasios.zovoilis@uleth.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6425-0402

Funding

Alberta Innovates - Health Solutions

  • Majid H Mohajerani

Alzheimer Society of Alberta and Northwestern Territories

  • Majid H Mohajerani

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

  • Athanasios Zovoilis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the institutional animal care committee protocol number1404 and performed in accordance with the standards set out by the Canadian Council for Animal Care.,

Copyright

© 2020, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,051
    views
  • 189
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yubo Cheng
  2. Luke Saville
  3. Babita Gollen
  4. Christopher Isaac
  5. Abel Belay
  6. Jogender Mehla
  7. Kush Patel
  8. Nehal Thakor
  9. Majid H Mohajerani
  10. Athanasios Zovoilis
(2020)
Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology
eLife 9:e61265.
https://doi.org/10.7554/eLife.61265

Share this article

https://doi.org/10.7554/eLife.61265

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.