Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology

Abstract

The functional importance of many non-coding RNAs (ncRNAs) generated by repetitive elements and their connection with pathologic processes remains elusive. B2 RNAs, a class of ncRNAs of the B2 family of SINE repeats, mediate through their processing the transcriptional activation of various genes in response to stress. Here we show that this response is dysfunctional during amyloid beta toxicity and pathology in the mouse hippocampus due to increased levels of B2 RNA processing, leading to constitutively elevated B2 RNA target gene expression and high Trp53 levels. Evidence indicates that Hsf1, a master regulator of stress response, mediates B2 RNA processing in hippocampal cells, and is activated during amyloid toxicity, accelerating the processing of SINE RNAs and gene hyper-activation. Our study reveals that in mouse, SINE RNAs constitute a novel pathway deregulated in amyloid beta pathology, with potential implications for similar cases in the human brain, such as Alzheimer's disease (AD).

Data availability

Short and long-RNA-seq data have been deposited to GEO with access number GSE149243.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yubo Cheng

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke Saville

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-1268
  3. Babita Gollen

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Isaac

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Abel Belay

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Jogender Mehla

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Kush Patel

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Nehal Thakor

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Majid H Mohajerani

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0964-2977
  10. Athanasios Zovoilis

    Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada
    For correspondence
    athanasios.zovoilis@uleth.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6425-0402

Funding

Alberta Innovates - Health Solutions

  • Majid H Mohajerani

Alzheimer Society of Alberta and Northwestern Territories

  • Majid H Mohajerani

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

  • Athanasios Zovoilis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado Anschutz Medical Campus, United States

Ethics

Animal experimentation: All experimental procedures were approved by the institutional animal care committee protocol number1404 and performed in accordance with the standards set out by the Canadian Council for Animal Care.,

Version history

  1. Received: July 20, 2020
  2. Accepted: November 15, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)
  4. Version of Record published: December 4, 2020 (version 2)

Copyright

© 2020, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,885
    views
  • 175
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yubo Cheng
  2. Luke Saville
  3. Babita Gollen
  4. Christopher Isaac
  5. Abel Belay
  6. Jogender Mehla
  7. Kush Patel
  8. Nehal Thakor
  9. Majid H Mohajerani
  10. Athanasios Zovoilis
(2020)
Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology
eLife 9:e61265.
https://doi.org/10.7554/eLife.61265

Share this article

https://doi.org/10.7554/eLife.61265

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.