Development and characterization of a chronic implant mouse model for vagus nerve stimulation

  1. Ibrahim T Mughrabi
  2. Jordan Hickman
  3. Naveen Jayaprakash
  4. Dane Thompson
  5. Umair Ahmed
  6. Eleni S Papadoyannis
  7. Yao-Chuan Chang
  8. Adam Abbas
  9. Timir Datta-Chaudhuri
  10. Eric H Chang
  11. Theodoros P Zanos
  12. Sunhee C Lee
  13. Robert C Froemke
  14. Kevin J Tracey
  15. Cristin Welle  Is a corresponding author
  16. Yousef Al-Abed
  17. Stavros Zanos  Is a corresponding author
  1. The Feinstein Institutes for Medical Research, United States
  2. University of Colorado Anschutz Medical Campus, United States
  3. New York University School of Medicine, United States

Abstract

Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in 4 research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, and 4.

Article and author information

Author details

  1. Ibrahim T Mughrabi

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8057-6146
  2. Jordan Hickman

    Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
    Competing interests
    No competing interests declared.
  3. Naveen Jayaprakash

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  4. Dane Thompson

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  5. Umair Ahmed

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  6. Eleni S Papadoyannis

    Neuroscience, New York University School of Medicine, Manhattan, United States
    Competing interests
    No competing interests declared.
  7. Yao-Chuan Chang

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0340-4652
  8. Adam Abbas

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  9. Timir Datta-Chaudhuri

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  10. Eric H Chang

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  11. Theodoros P Zanos

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  12. Sunhee C Lee

    Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  13. Robert C Froemke

    New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1230-6811
  14. Kevin J Tracey

    Labolatory of Biomedical Science, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    Kevin J Tracey, K.J.T. holds patents broadly related to this work. He has assigned all rights to the Feinstein Institutes for Medical Research..
  15. Cristin Welle

    Neurosurgery and Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
    For correspondence
    cristin.welle@cuanschutz.edu
    Competing interests
    No competing interests declared.
  16. Yousef Al-Abed

    Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  17. Stavros Zanos

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    For correspondence
    szanos@northwell.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3967-8164

Funding

Defense Advanced Research Projects Agency (HR0011-17-2-0025)

  • Stavros Zanos

United Therapeutics Corporation

  • Stavros Zanos

Boston Scientific Corporation

  • Yousef Al-Abed

Defense Advanced Research Projects Agency (HR0011-17-2-0051)

  • Cristin Welle

Defense Advanced Research Projects Agency (N66001-17-2-4010)

  • Robert C Froemke

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD088411)

  • Robert C Froemke

Brain Research through Advancing Innovative Neurotechnologies (NS107616)

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC12557)

  • Robert C Froemke

Howard Hughes Medical Institute (Faculty Scholarship)

  • Robert C Froemke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments complied with relevant ethical guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC) of the Feinstein Institutes for Medical Research (protocol numbers: 2016-029, 2017-010, and 2019-010) and University of Colorado Anschutz Medical Campus (protocol number: 00238).

Copyright

© 2021, Mughrabi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,952
    views
  • 724
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ibrahim T Mughrabi
  2. Jordan Hickman
  3. Naveen Jayaprakash
  4. Dane Thompson
  5. Umair Ahmed
  6. Eleni S Papadoyannis
  7. Yao-Chuan Chang
  8. Adam Abbas
  9. Timir Datta-Chaudhuri
  10. Eric H Chang
  11. Theodoros P Zanos
  12. Sunhee C Lee
  13. Robert C Froemke
  14. Kevin J Tracey
  15. Cristin Welle
  16. Yousef Al-Abed
  17. Stavros Zanos
(2021)
Development and characterization of a chronic implant mouse model for vagus nerve stimulation
eLife 10:e61270.
https://doi.org/10.7554/eLife.61270

Share this article

https://doi.org/10.7554/eLife.61270

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Xu Zheng, Shi Yu ... Guangxun Meng
    Research Article

    Innate immune responses triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play pivotal roles in the pathogenesis of COVID-19, while host factors including proinflammatory cytokines are critical for viral containment. By utilizing quantitative and qualitative models, we discovered that soluble factors secreted by human monocytes potently inhibit SARS-CoV-2-induced cell-cell fusion in viral-infected cells. Through cytokine screening, we identified that interleukin-1β (IL-1β), a key mediator of inflammation, inhibits syncytia formation mediated by various SARS-CoV-2 strains. Mechanistically, IL-1β activates RhoA/ROCK signaling through a non-canonical IL-1 receptor-dependent pathway, which drives the enrichment of actin bundles at the cell-cell junctions, thus prevents syncytia formation. Notably, in vivo infection experiments in mice confirmed that IL-1β significantly restricted SARS-CoV-2 spread in the lung epithelium. Together, by revealing the function and underlying mechanism of IL-1β on SARS-CoV-2-induced cell-cell fusion, our study highlights an unprecedented antiviral function for cytokines during viral infection.

    1. Immunology and Inflammation
    Ning Song, Hang Gao ... Wenlong Zhang
    Research Article

    Gout is a prevalent form of inflammatory arthritis that occurs due to high levels of uric acid in the blood leading to the formation of urate crystals in and around the joints, particularly affecting the elderly. Recent research has provided evidence of distinct differences in the gut microbiota of patients with gout and hyperuricemia compared to healthy individuals. However, the link between gut microbiota and age-related gout remained underexplored. Our study found that gut microbiota plays a crucial role in determining susceptibility to age-related gout. Specifically, we observed that age-related gut microbiota regulated the activation of the NLRP3 inflammasome pathway and modulated uric acid metabolism. More scrutiny highlighted the positive impact of ‘younger’ microbiota on the gut microbiota structure of old or aged mice, enhancing butanoate metabolism and butyric acid content. Experimentation with butyrate supplementation indicated that butyric acid exerts a dual effect, inhibiting inflammation in acute gout and reducing serum uric acid levels. These insights emphasize the potential of gut microbiome rejuvenation in mitigating senile gout, unraveling the intricate dynamics between microbiota, aging, and gout. It potentially serves as a therapeutic target for senile gout-related conditions.