Development and characterization of a chronic implant mouse model for vagus nerve stimulation

  1. Ibrahim T Mughrabi
  2. Jordan Hickman
  3. Naveen Jayaprakash
  4. Dane Thompson
  5. Umair Ahmed
  6. Eleni S Papadoyannis
  7. Yao-Chuan Chang
  8. Adam Abbas
  9. Timir Datta-Chaudhuri
  10. Eric H Chang
  11. Theodoros P Zanos
  12. Sunhee C Lee
  13. Robert C Froemke
  14. Kevin J Tracey
  15. Cristin Welle  Is a corresponding author
  16. Yousef Al-Abed
  17. Stavros Zanos  Is a corresponding author
  1. The Feinstein Institutes for Medical Research, United States
  2. University of Colorado Anschutz Medical Campus, United States
  3. New York University School of Medicine, United States

Abstract

Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in 4 research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, and 4.

Article and author information

Author details

  1. Ibrahim T Mughrabi

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8057-6146
  2. Jordan Hickman

    Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
    Competing interests
    No competing interests declared.
  3. Naveen Jayaprakash

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  4. Dane Thompson

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  5. Umair Ahmed

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  6. Eleni S Papadoyannis

    Neuroscience, New York University School of Medicine, Manhattan, United States
    Competing interests
    No competing interests declared.
  7. Yao-Chuan Chang

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0340-4652
  8. Adam Abbas

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  9. Timir Datta-Chaudhuri

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  10. Eric H Chang

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  11. Theodoros P Zanos

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  12. Sunhee C Lee

    Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  13. Robert C Froemke

    New York University School of Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1230-6811
  14. Kevin J Tracey

    Labolatory of Biomedical Science, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    Kevin J Tracey, K.J.T. holds patents broadly related to this work. He has assigned all rights to the Feinstein Institutes for Medical Research..
  15. Cristin Welle

    Neurosurgery and Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
    For correspondence
    cristin.welle@cuanschutz.edu
    Competing interests
    No competing interests declared.
  16. Yousef Al-Abed

    Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, United States
    Competing interests
    No competing interests declared.
  17. Stavros Zanos

    Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, United States
    For correspondence
    szanos@northwell.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3967-8164

Funding

Defense Advanced Research Projects Agency (HR0011-17-2-0025)

  • Stavros Zanos

United Therapeutics Corporation

  • Stavros Zanos

Boston Scientific Corporation

  • Yousef Al-Abed

Defense Advanced Research Projects Agency (HR0011-17-2-0051)

  • Cristin Welle

Defense Advanced Research Projects Agency (N66001-17-2-4010)

  • Robert C Froemke

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD088411)

  • Robert C Froemke

Brain Research through Advancing Innovative Neurotechnologies (NS107616)

  • Robert C Froemke

National Institute on Deafness and Other Communication Disorders (DC12557)

  • Robert C Froemke

Howard Hughes Medical Institute (Faculty Scholarship)

  • Robert C Froemke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Isaac M Chiu, Harvard Medical School, United States

Ethics

Animal experimentation: All animal experiments complied with relevant ethical guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC) of the Feinstein Institutes for Medical Research (protocol numbers: 2016-029, 2017-010, and 2019-010) and University of Colorado Anschutz Medical Campus (protocol number: 00238).

Version history

  1. Received: July 20, 2020
  2. Accepted: April 2, 2021
  3. Accepted Manuscript published: April 6, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)

Copyright

© 2021, Mughrabi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,942
    Page views
  • 636
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ibrahim T Mughrabi
  2. Jordan Hickman
  3. Naveen Jayaprakash
  4. Dane Thompson
  5. Umair Ahmed
  6. Eleni S Papadoyannis
  7. Yao-Chuan Chang
  8. Adam Abbas
  9. Timir Datta-Chaudhuri
  10. Eric H Chang
  11. Theodoros P Zanos
  12. Sunhee C Lee
  13. Robert C Froemke
  14. Kevin J Tracey
  15. Cristin Welle
  16. Yousef Al-Abed
  17. Stavros Zanos
(2021)
Development and characterization of a chronic implant mouse model for vagus nerve stimulation
eLife 10:e61270.
https://doi.org/10.7554/eLife.61270

Share this article

https://doi.org/10.7554/eLife.61270

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Cell Biology
    2. Immunology and Inflammation
    Cristina Cacho-Navas, Carmen López-Pujante ... Jaime Millán
    Research Article

    Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell–cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.