Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation

  1. Grant Kinsler
  2. Kerry Geiler-Samerotte
  3. Dmitri A Petrov  Is a corresponding author
  1. Stanford University, United States
  2. Arizona State University, United States

Abstract

Building a genotype-phenotype-fitness map of adaptation is a central goal in evolutionary biology. It is difficult even when adaptive mutations are known because it is hard to enumerate which phenotypes make these mutations adaptive. We address this problem by first quantifying how the fitness of hundreds of adaptive yeast mutants responds to subtle environmental shifts. We then model the number of phenotypes these mutations collectively influence by decomposing these patterns of fitness variation. We find that a small number of inferred phenotypes can predict fitness of the adaptive mutations near their original glucose-limited evolution condition. Importantly, inferred phenotypes that matter little to fitness at or near the evolution condition can matter strongly in distant environments. This suggests that adaptive mutations are locally modular—affecting a small number of phenotypes that matter to fitness in the environment where they evolved—yet globally pleiotropic—affecting additional phenotypes that may reduce or improve fitness in new environments.

Data availability

All sequencing data has been deposited to SRA under NIH BioProject number PRJNA641718.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Grant Kinsler

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8308-4665
  2. Kerry Geiler-Samerotte

    Biodesign Institute, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4666-2192
  3. Dmitri A Petrov

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    dpetrov@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3664-9130

Funding

National Institutes of Health (R35GM118165)

  • Dmitri A Petrov

National Institutes of Health (R35GM133674)

  • Kerry Geiler-Samerotte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vaughn S Cooper, University of Pittsburgh, United States

Version history

  1. Received: July 20, 2020
  2. Accepted: December 2, 2020
  3. Accepted Manuscript published: December 2, 2020 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2020, Kinsler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,553
    views
  • 692
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Grant Kinsler
  2. Kerry Geiler-Samerotte
  3. Dmitri A Petrov
(2020)
Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation
eLife 9:e61271.
https://doi.org/10.7554/eLife.61271

Share this article

https://doi.org/10.7554/eLife.61271

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.