Artistoo, a library to build, share, and explore simulations of cells and tissues in the web browser

  1. Inge M N Wortel  Is a corresponding author
  2. Johannes Textor  Is a corresponding author
  1. Radboud University, Netherlands
  2. Radboud Institute for Molecular Life Sciences, Netherlands

Abstract

The Cellular Potts Model (CPM) is a powerful in silico method for simulating biological processes at tissue scale. Their inherently graphical nature makes CPMs very accessible in theory, but in practice, they are mostly implemented in specialised frameworks users need to master before they can run simulations. We here present Artistoo (Artificial Tissue Toolbox), a JavaScript library for building 'explorable' CPM simulations where viewers can change parameters interactively, exploring their effects in real time. Simulations run directly in the web browser and do not require third-party software, plugins, or back-end servers. The JavaScript implementation imposes no major performance loss compared to frameworks written in C++; Artistoo remains sufficiently fast for interactive, real time simulations. Artistoo provides an opportunity to unlock CPM models for a broader audience: Interactive simulations can be shared via a URL in a zero-install setting. We discuss applications in CPM research, science dissemination, open science, and education.

Data availability

Source scripts have been provided for Figure 2.

Article and author information

Author details

  1. Inge M N Wortel

    Institute for Computing and Information Sciences, Data Science, Radboud University, Nijmegen, Netherlands
    For correspondence
    inge.wortel@ru.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3362-5229
  2. Johannes Textor

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    For correspondence
    johannes.textor@ru.nl
    Competing interests
    The authors declare that no competing interests exist.

Funding

KWF Kankerbestrijding (Young Investigator Grant,10620)

  • Johannes Textor

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vidi Grant,192.084)

  • Johannes Textor

Radboud Universitair Medisch Centrum (Master-PhD grant)

  • Inge M N Wortel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andreas Buttenschoen, University of British Columbia, Canada

Version history

  1. Received: July 21, 2020
  2. Accepted: April 8, 2021
  3. Accepted Manuscript published: April 9, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Wortel & Textor

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,483
    views
  • 208
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Inge M N Wortel
  2. Johannes Textor
(2021)
Artistoo, a library to build, share, and explore simulations of cells and tissues in the web browser
eLife 10:e61288.
https://doi.org/10.7554/eLife.61288

Share this article

https://doi.org/10.7554/eLife.61288

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.