Social Behaviours: Nurturing nature
Behaviours emerge under the combined influence of the environment (nurture) and the genetic information an individual inherited from its ancestors (nature). However, it is still difficult to tease apart the respective contribution of these different factors, which are often deeply intertwined. This is particularly the case with regards to social behaviours.
When animals with a mutation in a gene show a change in a specific behaviour, it is tempting to conclude that said gene is somehow involved in that behaviour. But this is not always the case. Animals are usually raised by their parents and grow up with siblings, who may share the same environment and genetic background (including this mutation). This makes it difficult to pinpoint exactly which elements, or combination of elements, are responsible for the emergence of these ‘behavioural phenotypes’ – that is, behaviours that are associated with a specific genotype.
To understand the direct effect of a specific mutation on the behavioural phenotype of an individual, the environment must be controlled for, including the genetic background of the individual’s social group – its genetic social environment (Baud et al., 2017). Now, in eLife, Rui Oliveira and co-workers based in Portugal, Israel and Poland – including Diogo Ribeiro as first author – report that, in zebrafish, the genetic social environment of an individual while it is growing up affects the adult’s behavioural phenotype (Ribeiro et al., 2020a).
Zebrafish are a good model to study the indirect effects of social genetic variation because they are highly social animals with a genome that can easily be modified. Ribeiro et al. first generated a mutant zebrafish line that lacks the gene for the oxytocin receptor, a protein involved in social-bonding behaviours in animals (Olff et al., 2013). A mutant fish was then either raised with its mutant siblings, or in a group of non-mutant fish. Similarly, a non-mutant individual was raised in a shoal of other non-mutants, or with mutant fish. Using different methods, the team then examined how each combination of genetic and social environment influenced the behavioural phenotype of the mutants.
Regardless of whether they were raised with mutants or non-mutants, fish that lacked the gene for the oxytocin receptor were always worse at discriminating between a familiar and an unfamiliar fish – a result predicted by previous studies (Ribeiro et al., 2020b). However, other experiments revealed that only mutant fish raised with other mutants were more reluctant to approach other fish and to integrate into a shoal. This showed that the genetic background of the group in which mutant fish were raised caused specific social phenotypes, as opposed to the loss of the oxytocin receptor gene alone.
This study may help researchers to understand how the genetic social environment can influence the impact of specific mutations on social interactions. It could also be relevant to work on other forms of behaviour, such as fear conditioning in mice: researchers wishing to investigate this behaviour would normally generate a mouse line lacking a gene thought to be involved in fear conditioning, and then examine how the mutation affects the behaviour of the mice. Variations in fear conditioning in the mutants would then be attributed to the genetic change rather than the social genetic environment. The work of Ribeiro et al. shows that researchers need to be aware of this effect, and control for it whenever possible.
These results also demonstrate the need to be cautious about the many human genetic studies that suggest potential links between a gene and the propensity to develop certain conditions. For instance, the general public now has easy access to DNA tests, which can link variations in certain genes to higher risks of becoming obese, being a smoker, or living a shorter life. However, a gene apparently associated with an increased risk for obesity may in fact be connected to increased parental anxiety. In this case, the weight gain would be a secondary effect of being raised by anxious parents. The impact of the social genetic environment should therefore be carefully assessed for all of these genes.
Finally, Ribeiro et al. show that specific social environments could potentially rescue or promote specific behavioural phenotypes, a finding that could be used to better study human behaviours and socialisation.
References
-
Oxytocin receptor signalling modulates novelty recognition but not social preference in zebrafishJournal of Neuroendocrinology 32:e12834.https://doi.org/10.1111/jne.12834
Article and author information
Author details
Publication history
Copyright
© 2020, Dreosti
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,518
- views
-
- 108
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Microbiology and Infectious Disease
Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.
-
- Ecology
For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants’ path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.