1. Physics of Living Systems
Download icon

Optimal evolutionary decision-making to store immune memory

  1. Oskar H Schnaack
  2. Armita Nourmohammad  Is a corresponding author
  1. Max Planck Institute for Dynamics and Self-organization, Germany
  2. University of Washington, United States
Research Article
  • Cited 0
  • Views 231
  • Annotations
Cite this article as: eLife 2021;10:e61346 doi: 10.7554/eLife.61346

Abstract

The adaptive immune system provides a diverse set of molecules that can mount specific responses against a multitude of pathogens. Memory is a key feature of adaptive immunity, which allows organisms to respond more readily upon re-infections. However, differentiation of memory cells is still one of the least understood cell fate decisions. Here, we introduce a mathematical framework to characterize optimal strategies to store memory to maximize the utility of immune response over an organism's lifetime. We show that memory production should be actively regulated to balance between affinity and cross-reactivity of immune receptors for an effective protection against evolving pathogens. Moreover, we predict that specificity of memory should depend on the organism's lifespan, and shorter-lived organisms with fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a baseline to gauge the efficacy of immune memory in light of an organism's coevolutionary history with pathogens.

Data availability

Numerical data generated for all figures and the corresponding code will be provided for publication.

Article and author information

Author details

  1. Oskar H Schnaack

    Statistical Physics of Evolving Systems, Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Armita Nourmohammad

    Physics, University of Washington, Seattle, United States
    For correspondence
    armita@uw.edu
    Competing interests
    Armita Nourmohammad, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6245-3553

Funding

Deutsche Forschungsgemeinschaft (SFB1310)

  • Armita Nourmohammad

Max Planck Society (MPRG funding)

  • Armita Nourmohammad

University of Washington (Royalty Research Fund: A153352)

  • Armita Nourmohammad

Max Planck Institute for Dynamics and Self-organization (Open-access funding)

  • Armita Nourmohammad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arvind Murugan, University of Chicago, United States

Publication history

  1. Received: July 22, 2020
  2. Accepted: April 23, 2021
  3. Accepted Manuscript published: April 28, 2021 (version 1)

Copyright

© 2021, Schnaack & Nourmohammad

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 231
    Page views
  • 31
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Ashwin Nandagiri et al.
    Research Article

    We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered mouse sperm at high-resolution. Beating waveforms are reconstructed using Proper Orthogonal Decomposition of the centerline tangent-angle profiles. Energy conservation is employed to obtain the mechanical power exerted by the dynein motors from the observed kinematics. A large proportion of the mechanical power exerted by the dynein motors is dissipated internally by the motors themselves. There could also be significant dissipation within the passive structures of the flagellum. The total internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples, indicating that ion-channel regulation by cysteine-rich secretory proteins (CRISPs) controls energy flows powering the axoneme.

    1. Developmental Biology
    2. Physics of Living Systems
    Yusuke Mii et al.
    Research Article

    The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modelling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.