Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin+ neurons in reticular thalamus

  1. Mahmood S Hoseini
  2. Bryan Higashikubo
  3. Frances S Cho
  4. Andrew H Chang
  5. Alexandra Clemente-Perez
  6. Irene Lew
  7. Agnieszka Ciesielska
  8. Michael P Stryker
  9. Jeanne T Paz  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institutes, United States

Abstract

Visual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown. Here we show that somatostatin- (SST) but not parvalbumin-expressing (PV) neurons in the visual sector of the nRT preferentially project to the dorsal lateral geniculate nucleus (dLGN), and modulate visual information transmission and gamma activity in primary visual cortex (V1). These findings pinpoint the SST neurons in nRT as powerful modulators of the visual information encoding accuracy in V1, and represent a novel circuit through which the nRT can influence representation of visual information.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for all figures are available in a spreadsheet format.

Article and author information

Author details

  1. Mahmood S Hoseini

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3139-0561
  2. Bryan Higashikubo

    Neurology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Frances S Cho

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew H Chang

    Neurology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandra Clemente-Perez

    Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Irene Lew

    Neurology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnieszka Ciesielska

    Neurology, Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael P Stryker

    Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeanne T Paz

    Neurology, Gladstone Institutes, San Francisco, United States
    For correspondence
    jeanne.paz@gladstone.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6339-8130

Funding

National Institute of Neurological Disorders and Stroke (NS096369)

  • Jeanne T Paz

National Science Foundation (1822598)

  • Michael P Stryker

National Institute for Health Research (EY025174)

  • Michael P Stryker

American Epilepsy Society

  • Bryan Higashikubo

National Institute of Neurological Disorders and Stroke (F31NA111819)

  • Frances S Cho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Solange P Brown, Johns Hopkins University, United States

Ethics

Animal experimentation: We performed all experiments in compliance with protocols approved by the Institutional Animal Care and Use Committees at the University of California, San Francisco and Gladstone Institutes (protocol numbers AN180588-02C and AN174396-03E). Precautions were taken to minimize stress and the number of animals used in all experiments. We followed the NIH guidelines for rigor and reproducibility of the research.

Version history

  1. Received: July 25, 2020
  2. Accepted: April 11, 2021
  3. Accepted Manuscript published: April 12, 2021 (version 1)
  4. Version of Record published: April 23, 2021 (version 2)

Copyright

© 2021, Hoseini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,914
    views
  • 404
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahmood S Hoseini
  2. Bryan Higashikubo
  3. Frances S Cho
  4. Andrew H Chang
  5. Alexandra Clemente-Perez
  6. Irene Lew
  7. Agnieszka Ciesielska
  8. Michael P Stryker
  9. Jeanne T Paz
(2021)
Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin+ neurons in reticular thalamus
eLife 10:e61437.
https://doi.org/10.7554/eLife.61437

Share this article

https://doi.org/10.7554/eLife.61437

Further reading

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.