A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets

  1. Jan Clemens  Is a corresponding author
  2. Stefan Schöneich
  3. Konstantin Kostarakos
  4. R Matthias Hennig
  5. Berthold Hedwig
  1. European Neuroscience Institute, Germany
  2. Friedrich-Schiller-University, Germany
  3. University of Graz, Austria
  4. Humboldt-Universität Berlin, Germany
  5. University of Cambridge, United Kingdom

Abstract

How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arise from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate-different network parameters can create similar changes in the phenotype-which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes and we reveal network properties that constrain and support behavioral diversity.

Data availability

We are in the process of uploading the previously published data (which had not been deposited before) used for fitting the model tohttps://data.goettingen-research-online.de/dataverse/cricketnetThe source code required for running the model was deposited athttps://github.com/janclemenslab/cricketnet

Article and author information

Author details

  1. Jan Clemens

    Neural Computation and Behavior group, European Neuroscience Institute, Göttingen, Germany
    For correspondence
    clemensjan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4200-8097
  2. Stefan Schöneich

    Institute for Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4503-5111
  3. Konstantin Kostarakos

    Institute of Biology, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. R Matthias Hennig

    Humboldt-Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Berthold Hedwig

    Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Biotechnology and Biological Sciences Research Council (BB/J01835X/1)

  • Konstantin Kostarakos
  • Berthold Hedwig

Royal Society (Newton International Fellowship)

  • Konstantin Kostarakos

Leibniz-Gemeinschaft (SAW 2012-MfN-3)

  • R Matthias Hennig

Deutsche Forschungsgemeinschaft (HE 2812/4-1)

  • R Matthias Hennig

Deutsche Forschungsgemeinschaft (HE 2812/5-1)

  • R Matthias Hennig

Deutsche Forschungsgemeinschaft (CL 596/1-1)

  • Jan Clemens

Deutsche Forschungsgemeinschaft (CL 596/2-1)

  • Jan Clemens

Deutsche Forschungsgemeinschaft (SCHO 1822/3-1)

  • Stefan Schöneich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Clemens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 893
    views
  • 130
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Clemens
  2. Stefan Schöneich
  3. Konstantin Kostarakos
  4. R Matthias Hennig
  5. Berthold Hedwig
(2021)
A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets
eLife 10:e61475.
https://doi.org/10.7554/eLife.61475

Share this article

https://doi.org/10.7554/eLife.61475

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.