A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets
Abstract
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arise from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate-different network parameters can create similar changes in the phenotype-which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes and we reveal network properties that constrain and support behavioral diversity.
Data availability
We are in the process of uploading the previously published data (which had not been deposited before) used for fitting the model tohttps://data.goettingen-research-online.de/dataverse/cricketnetThe source code required for running the model was deposited athttps://github.com/janclemenslab/cricketnet
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/J01835X/1)
- Konstantin Kostarakos
- Berthold Hedwig
Royal Society (Newton International Fellowship)
- Konstantin Kostarakos
Leibniz-Gemeinschaft (SAW 2012-MfN-3)
- R Matthias Hennig
Deutsche Forschungsgemeinschaft (HE 2812/4-1)
- R Matthias Hennig
Deutsche Forschungsgemeinschaft (HE 2812/5-1)
- R Matthias Hennig
Deutsche Forschungsgemeinschaft (CL 596/1-1)
- Jan Clemens
Deutsche Forschungsgemeinschaft (CL 596/2-1)
- Jan Clemens
Deutsche Forschungsgemeinschaft (SCHO 1822/3-1)
- Stefan Schöneich
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Clemens et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 954
- views
-
- 147
- downloads
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
-
- Evolutionary Biology
A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.