The mechanism of kinesin inhibition by kinesin-binding protein

  1. Joseph Atherton  Is a corresponding author
  2. Jessica JA Hummel
  3. Natacha Olieric
  4. Julia Locke
  5. Alejandro Peña
  6. Steven S Rosenfeld
  7. Michel O Steinmetz
  8. Casper C Hoogenraad
  9. Carolyn A Moores
  1. Randall Centre for Cell and Molecular Biophysics, King’s College, United Kingdom
  2. Institute of Structural and Molecular Biology, Birkbeck, University of London, United Kingdom
  3. Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Netherlands
  4. Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Switzerland
  5. Department of Cancer Biology, Mayo Clinic, United States
  6. University of Basel, Biozentrum, Switzerland
8 figures, 2 videos, 3 tables and 1 additional file

Figures

Figure 1 with 3 supplements
Kinesin-binding protein (KBP) is a tetratricopeptide repeat (TPR)-containing right-handed α-solenoid.

(a) Model of KBP (ribbon representation) displayed in experimental cryo-electron microscopy density. The N-terminal (olive) and C-terminal (gold) subdomains are separated by a linker region (black). …

Figure 1—figure supplement 1
Kinesin-binding protein (KBP) reconstruction, structure, and loop lengths.

(a) Gold-standard Fourier shell correlation (FSC) curves between independent masked, unmasked, phase-randomised, and corrected half-maps (Chen et al., 2013) of KBP as calculated by RELION v3.1 (Zivan…

Figure 1—figure supplement 2
Kinesin-binding protein (KBP) loops, sequence, inter-species conservation, and experimental mutations.

The human KBP sequence (numbering above), with residues coloured by intra-species sequence identity as indicated in the key. The following species were included in the Clustal Omega multiple …

Figure 1—figure supplement 3
Approximate path of the kinesin-binding protein (KBP) linker loop (LL).

View of KBP’s LL, using the same KBP model subdomain colouring and representation as in Figure 1a and b. Only density for the LL is shown and a rough path for the LL is indicated with a solid black …

Figure 2 with 1 supplement
Kinesin-binding protein (KBP) conformationally adapts to bind KIF15’s motor domain via both subdomains.

(a) Model of the KBP–KIF15_MD6S complex (ribbon representation) displayed in experimental cryo-electron microscopy density. The N-terminal (olive) and C-terminal (gold) subdomains and the linker …

Figure 2—figure supplement 1
Kinesin-binding protein (KBP)–KIF15_MD6S reconstruction resolution estimation and 2D class analysis of KBP–KIF1A_MD and KBP–KIF15_MD complexes.

(a) KIF15_MD6S MT-activated steady-state ATPase velocity plotted as a function of [MT]. Data were fit to a Michaelis–Menten kinetic (pink curve) yielding values for kcat = 2.9 ± 0.5 s−1 and K0.5,MT =…

Figure 3 with 3 supplements
The KIF15 motor domain binds kinesin-binding protein (KBP) via rearrangement of its tubulin-binding subdomain.

(a) The crystallographic model of the KIF15_MD alone (PDB: 4BN2 Klejnot et al., 2014) was superimposed on the KIF15 region of the KBP–KIF15_MD6S complex, with the KIF15 part of the KBP–KIF15_MD6S …

Figure 3—figure supplement 1
KIF15_MD6S adopts a canonical MT-bound kinesin conformation.

(a) Gold-standard Fourier shell correlation (FSC) curves between independent masked, unmasked, phase-randomised, and corrected half-maps (Chen et al., 2013) of the KIF15_MD6S-MT complex as …

Figure 3—figure supplement 2
Movement of Kα4 of the Kin TBsd upon kinesin-binding protein (KBP) binding.

(a) The KIF15_MD alone crystal structure (PDB code:4BN2 Klejnot et al., 2014) is shown coloured by kinesin subdomain (as in Figure 3), fitted into the KBP–KIF15_MD6S complex cryo-electron microscopy …

Figure 3—figure supplement 3
Examples of tetratricopeptide repeat (TPR)-containing α-solenoid proteins binding α-helical SSE ligands.

(a–d) Comparison of (a) kinesin-binding protein (KBP)-KIF15_MD6S complex with other TPR-containing α-solenoids shown in blue, and binding peptide motifs shown in magenta or pink for helical and …

Figure 4 with 1 supplement
Kinesin-binding protein (KBP) binds kinesin MDs via conserved motifs in the α-solenoid edge loops and α-helices at the concave face.

(a) Pseudo-atomic model of the KBP–KIF15_MD6S complex (ribbon representation) displayed in cryo-electron microscopy density, using the same viewpoint as Figure 2a, but with the KIF15_MD6S now …

Figure 4—figure supplement 1
Additional kinesin-binding protein (KBP) α-solenoid edge loops proximal to KIF15_MD6S.

Colouring and representation as in Figure 4. (a) A view showing α-helical pairs αHP1, αHP2, αHP3, αHP8, and αHP9 of KBP and the KIF15_MD6S coloured by subdomain as labelled. (b) Left zoomed region …

Figure 5 with 3 supplements
Disruption of cryo-electron microscopy defined kinesin-binding protein (KBP)–kinesin interface perturbs KBP inhibition of KIF15- and KIF1A-mediated cargo translocation in cells.

(a) Schematic depiction of the inducible peroxisome motility assay, with the kinesin motor domain fused to an FRB domain and PEX fused to an FKBP domain. Addition of rapalog (Rap) links FRB and FKBP …

Figure 5—figure supplement 1
Kinesin-binding protein (KBP) mutants show similar expression profiles in COS-7 cells.

Representative images of COS-7 cells expressing HA–KBP mutant constructs. Scale bar, 10 µm.

Figure 5—figure supplement 2
Pull-down experiments demonstrate the effect of kinesin-binding protein (KBP) mutation on the interaction between KIF15 and KIF1A.

(a) Control pull-down experiment with bioGFP-EV, bioGFP-KIF1A_MDC or bioGFP-KIF15_MDC and HA–KBP showing that KBP interacts with KIF1A_MDC and KIF15_MDC, but not with bioGFP-EV. (b, c) Example of …

Figure 5—figure supplement 3
Kinesin motors show different properties in the peroxisome assay.

(a–c) Representative images of peroxisomes in COS-7 cells expressing KIF1A_MDC (a) or KIF15_MDC–FRB (b, c), PEX–mRFP–FKBP and HA (left panels) with addition of rapalog. Images were thresholded at …

Conserved motifs in kinesin-binding protein (KBP)-binding kinesin MDs.

(a) Sequence alignment of the tubulin-binding subdomain from kinesin motor domains, made using Clustal Omega multiple sequence alignment (Sievers et al., 2011). Residues are coloured according to …

Author response image 1
KIF15 localizes on microtubules in the peroxisome motility assay.

(a, b) Representative images of COS-7 cells expressing KIF15_MDC–HA–FRB and PEX–mRFP–FKBP treated with rapalog for three hours and co-stained for (a) microtubules (rabbit anti-α-tubulin, 1:1000, …

Author response image 2
Overview of pull-down experimental data.

Pull-down experiments showing the interaction between (a) KIF15_MDC or (b) KIF1A_MDC and mutated KBP constructs in HEK293T cell lysates. Two individual experiments for each pull-down are shown. …

Videos

Video 1
Kinesin-binding protein (KBP) undergoes conformational change to relieve clashes when forming a complex with KIF15_MD6S.

The KBP-alone model was superimposed on the KBP–KIF15_MD6S model using UCSF Chimera’s matchmaker (Pettersen et al., 2004). A conformational morph movie was then generated in Chimera between the …

Video 2
Interaction of kinesin-binding protein (KBP) with the KIF15 motor domain.

Model of the KBP–KIF15_MD6S complex (ribbon representation) displayed in experimental cryo-electron microscopy density. The N-terminal (olive) and C-terminal (gold) subdomains and the linker region …

Tables

Table 1
Cryo-electron microscopy reconstruction information and model refinement statistics and model geometry.

Data collection, processing, and model refinement information for the kinesin-binding protein (KBP), KBP–KIF15_MD6S, and KIF15_MD6S–MT datasets.

KBP
(EMDB: EMD-11338, PDB: 6ZPG)
KBP–KIF15_MD6S (EMDB: EMD-11339, PDB: 6ZPH)KIF15_MD6S–MT
(EMDB: EMD-11340, PDB: 6ZPI)
Data collection and processing
 Pixel size (Å)*1.055, 1.043, or 1.0471.0471.39
 Number of micrographs (collected, final)*9360, 75476497, 5138214,202
 Final particle number258,049 (81,628 of which on graphene oxide)751312,674
Map resolution (Å)
FSC threshold
4.6
Independent half-map FSC 0.143
6.9
Independent half-map FSC 0.143
4.5
Independent half-map FSC 0.143
Refinement
Refinement resolution (Å)
CC_mask
4.6
0.64
6.9
0.74
6
0.60
Map sharpening B-factor (Å2)−200−495−134
Model composition
Nonhydrogen atoms
Protein residues
Ligands
3808
610
0
6232
948
1
9420
1185
4
R.m.s. deviations§
Bond lengths (Å)
Bond angles (°)
0.01
0.96
0.01
1.07
0.08
0.17
Validation#
MolProbity score
Clashscore
Poor rotamers (%)
1.66
5.25
0.5%
1.84
7.31
0.9%
1.95
13.25
0.1%
Ramachandran plot#
Favoured (%)
Allowed (%)
Outliers (%)
94.38
5.62
0
93.13
6.87
0
95.38
4.62
0
  1. *Inclusive of all data collection sessions.

    The resolution value at the gold-standard Fourier Shell Correlation (FSC) 0.143 criterion between independently refined half-maps.

  2. Cross-correlation provided by Phenix real-space refine (Afonine et al., 2018).

    §Root-mean-square deviations of bond lengths or angles in the model.

  3. #As defined by the MolProbity validation server (Chen et al., 2010).

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Gene (Homo sapiens)KIAA1279GenBankHGNC:23419
Gene (Mus musculus)KIF1AGenBankMGI:108391
Gene (Mus musculus)KIF15GenBankMGI:1098258
Strain, strain background (Escherichia coli)BL21(DE3)NEBCat. #: C2527HCompetent cells
Strain, strain background (Escherichia coli)BL21-Gold (DE3)AgilentCat. #: 230130Competent cells
Strain, strain background (Escherichia coli)Rosetta2 (DE3)NovagenCat. #: 71400Competent cells
Cell line (Homo sapiens)Human embryonic kidney 239T (HEK293T)ATCCCRL-3216 RRID:CVCL_0063
Cell line (Cercopithecus aethiops)Cercopithecus aethiops kidney (COS-7)ATCCCRL-1651
RRID:CVCL_0224
Peptide, recombinant proteinPorcine tubulin (>99% pure)Cytoskeleton IncCat. #: T240
AntibodyAnti-HA
(mouse monoclonal)
RocheCat# 11666606001; RRID:AB_514506IF (1:500)
AntibodyAnti-mouse IgG1, Alexa488
(goat polyclonal)
Thermo Fisher ScientificCat# A-21121, RRID:AB_2535764IF (1:400)
AntibodyAnti-HA (mouse monoclonal)BiolegendCat# 901533;
RRID:AB_2801249
WB (1:2000)
AntibodyAnti-GFP (rabbit polyclonal)AbcamCat# ab290; RRID:AB_303395WB (1:10000)
AntibodyAnti-rabbit IgG antibody, IRDye 680LTconjugated (goat polyclonal)LI-COR BiosciencesCat# 827–11081; RRID:AB_10795015WB (1:20000)
AntibodyAnti-mouse IgG antibody, IRDye 800CWconjugated
(goat polyclonal)
LI-COR BiosciencesCat# 827–08364; RRID:AB_10793856WB (1:15000)
Recombinant DNA reagentKBP (plasmid)Kevenaar et al., 2016Described in Materials and methods
Recombinant DNA reagentKIF1A_MD (plasmid)Atherton et al., 2014Described in Materials and methods
Recombinant DNA reagentKIF15_MD (plasmid)This studyDescribed in Materials and methods
Recombinant DNA reagentpebioGFP (plasmid)van der Vaart et al., 2013N/ADescribed in Materials and methods
Recombinant DNA reagentBirA coding vector (plasmid)van der Vaart et al., 2013N/ADescribed in Materials and methods
Recombinant DNA reagentGW1–PEX3–mRFP–FKBP1
(plasmid)
Kevenaar et al., 2016N/ADescribed in Materials and methods
Recombinant DNA reagentβ-actin–Kif1A_MDC–FRB
(plasmid)
Kevenaar et al., 2016N/ADescribed in Materials and methods
Recombinant DNA reagentβ-actin–Kif15_MDC–FRB
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpebioGFP-Kif1A_MDC
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpebioGFP-Kif15_MDC
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L1
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L3
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L5
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L10
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L12
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L14
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L16
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L18
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L10+L12 (plasmid)This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L10+L14 (plasmid)This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_L12+L14 (plasmid)This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_αHP4a
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_αHP4b
(plasmid)
This studyN/ADescribed in Materials and methods
Recombinant DNA reagentpGW1–HA–KBP_αHP5a
(plasmid)
This studyN/ADescribed in Materials and methods
Sequence-based reagentKBP_fwdThis studyPCR primer for KBP mutantsTATTATTATGGCGCGCCAGGATCCCCGGAATTCGGCACGAGGGAGGCCGCTATGGCGAACGTTCCGTGGGCA
Sequence-based reagentKBP_revThis studyPCR primer for KBP mutantsCTCGTCGACTCCTAATCCTTAAGTCAGGGCCATCTT
Sequence-based reagentKBP_L1_fwdThis studyPCR primer for KBP_L1CTGCATAAAAATCCGGCAGCAGCACCAGCAGCATCCAAATACAGCGCC
Sequence-based reagentKBP_L1_revThis studyPCR primer for KBP_L1GGCGCTGTATTTGGATGCTGCTGGTGCTGCTGCCGGATTTTTATGCAG
Sequence-based reagentKBP_L3_fwdThis studyPCR primer for KBP_L3TGAACCACATCGACGCAGGAGGACTGTCGGCGGGGGA
Sequence-based reagentKBP_L3_revThis studyPCR primer for KBP_L3TCCCCCGCCGACAGTCCTCCTGCGTCGATGTGGTTCA
Sequence-based reagentKBP_L5_fwdThis studyPCR primer for KBP_L5ATCTTGTGGTCTGAAGCAGGAGCAATTGAAACTGCACAG
Sequence-based reagentKBP_L5_revThis studyPCR primer for KBP_L5CTGTGCAGTTTCAATTGCTCCTGCTTCAGACCACAAGAT
Sequence-based reagentKBP_L10_fwdThis studyPCR primer for KBP_L10TTTGGTCAAACTGGAGCAGGAGCAGGAGCAGGAGCAGGACCAGCAGGAGCAGGAGCAGGACCAGGAGGATATCATCAAAGAAA
Sequence-based reagentKBP_L10_revThis studyPCR primer for KBP_L10TTTCTTTGATGATATCCTCCTGGTCCTGCTCCTGCTCCTGCTGGTCCTGCTCCTGCTCCTGCTCCTGCTCCAGTTTGACCAAA
Sequence-based reagentKBP_L12_fwdThis studyPCR primer for KBP_L12GAGTTCTTTCAGATTGGCGGCGCGGTCACTGACCATATT
Sequence-based reagentKBP_L12_revThis studyPCR primer for KBP_L12AATATGGTCAGTGACCGCGCCGCCAATCTGAAAGAACTC
Sequence-based reagentKBP_L14_fwdThis studyPCR primer for KBP_L14TAGAGCCCCTAACTGTAGCAGCAGGACCAGCAGCATATCTGTTGGTCAAC
Sequence-based reagentKBP_L14_revThis studyPCR primer for KBP_L14GTTGACCAACAGATATGCTGCTGGTCCTGCTGCTACAGTTAGGGGCTCTA
Sequence-based reagentKBP_L16_fwdThis studyPCR primer for KBP_L16TCCCTGAGAGACCCAGCAGCAGGAGCACCAGCAGGAGCAGGAGCAGGAGCAGCACGCCCTGCCATGTTA
Sequence-based reagentKBP_L16_revThis studyPCR primer for KBP_L16TAACATGGCAGGGCGTGCTGCTCCTGCTCCTGCTCCTGCTGGTGCTCCTGCTGCTGGGTCTCTCAGGGA
Sequence-based reagentKBP_L18_fwdThis studyPCR primer for
KBP_L18
ATTGTTGATTACTGTGCAGCAGGACCAGGAGCCGCCCAGGAAATA
Sequence-based reagentKBP_L18_revThis studyPCR primer for KBP_L18TATTTCCTGGGCGGCTCCTGGTCCTGCTGCACAGTAATCAACAAT
Sequence-based reagentKBP_HP4a_fwdThis studyPCR primer for KBP_L HP4aACTCATAACCTATATGCACTAGCTGCAGTCTACCAGCATCTG
Sequence-based reagentKBP_L HP4a _revThis studyPCR primer for KBP_ HP4aCAGATGCTGGTAGACTGCAGCTAGTGCATATAGGTTATGAGT
Sequence-based reagentKBP_HP4b_fwdThis studyPCR primer for KBP_L HP4bAGTACACTAAAACGCGCACTTGAGCACAATGCC
Sequence-based reagentKBP_L HP4b _revThis studyPCR primer for KBP_ HP4bGGCATTGTGCTCAAGTGCGCGTTTTAGTGTACT
Sequence-based reagentKBP_HP5a_fwdThis studyPCR primer for KBP_L HP5aGCTATCAATGCTGCTGCGTTGTCAGCGTTTTACATCAATAAG
Sequence-based reagentKBP_ HP5a _revThis studyPCR primer for KBP_ HP5aCTTATTGATGTAAAACGCTGACAACGCAGCAGCATTGATAGC
Sequence-based reagentKIF15_FRB_fwdThis studyPCR primer for KIF15–FRBAAGCTTGCCACCATGGGCGCGCCTGCCACCATGGCTCCTGGCTGCAAATCT
Sequence-based reagentKIF15_FRB_revThis studyPCR primer for KIF15–FRBAGAGGATTCTAGAAGCAGGCGCGCCAGCGTAGTCTGGGACGTCGTATGGGTAGAATTCTCCTGGTGTCAGCTGCCCAGA
Sequence-based reagentbioGFPKIF15 _fwdThis studyPCR primer for bioGFPKIF15AGCTCAAGCTTCGAATTGGGCGCGCCAGCCACCATGGCTCCTGGCTGCAAATCT
Sequence-based reagentbioGFPKIF15_revThis studyPCR primer for bioGFPKIF15GAATTCGATATCCTGCAGGTCGACTCCAGATCCTCATCCTGGTGTCAGCTGCCCAGA
Sequence-based reagentbioGFPKIF1A _fwdThis studyPCR primer for bioGFPKIF1ATATTATAATGGCGCGCCAGCCACCGCCGGGGCCTCTGTGAAGGT
Sequence-based reagentbioGFPKIF1A_revThis studyPCR primer for bioGFPKIF1ACTCGTCGACTCCTCCTCCTCATTTGGGAGAAAACACACCCAA
Commercial assay or kitEnzChek Phosphate Assay KitInvitrogenE6646
Chemical compound, drugAP21967TaKaRaCat# 6350571 µM
Chemical compound, drugPEIPolySciencesCat# 24765–2
Chemical compound, drugFugenePromegaCat# E2692
Software, algorithmImageJNIHhttps://imagej.nih.gov/ij/; RRID:SCR_003070
Software, algorithmRELIONZivanov et al., 2018n/a
Software, algorithmCryoSparc2Punjani et al., 2017n/a
Software, algorithmCisTEMGrant et al., 2018n/a
Software, algorithmMiRPCook et al., 2020n/aProtocol implemented in RELION
Table 2
Kinesin-binding protein (KBP) mutants used in this study.

The original and mutated amino acid (top) and nucleotide sequences (bottom) are shown for each construct.

ConstructOriginal sequenceMutated to
L1EKEPYK gagaaggaaccatacaagAAAPAA gcagcagcaccagcagca
L3TEE acggaggagAGG gcaggagga
L5REE agagaagaaAGA gcaggagca
L10KISATEDTPEAEGEVPEL aagatctcagccacagaagacactcctgaagctgaaggagaagtgccagagcttAGAGAGAGPAGAGAGPGG gcaggagcaggagcaggagcaggaccagcaggagcaggagcaggaccaggagga
L12DGY gatggttatGGA ggcggcgcg
L14DLNPQY gacctgaatccacagtatAAGPAA gcagcaggaccagcagca
L16NKVFPEHIGEDVL aataaagtattccctgagcatataggggaagatgttcttAAGAPAGAGAGAA gcagcaggagcaccagcaggagcaggagcaggagcagca
L18EKHPE gaaaagcatcctgagAAGPG gcagcaggaccagga
αHP4aYLAQ tacctagctcaaALAA gcactagctgca
αHP4bQ cagA gca
αHP5aTLSQ accttgtcacagALSA gcgttgtcagcg

Additional files

Download links