The mechanism of kinesin inhibition by kinesin binding protein

  1. Joseph Atherton  Is a corresponding author
  2. Jessica JA Hummel
  3. Natacha Olieric
  4. Julia Locke
  5. Alejandro Peña
  6. Steven S Rosenfeld
  7. Michel O Steinmetz
  8. Casper C Hoogenraad
  9. Carolyn A Moores
  1. King's College London, United Kingdom
  2. Utrecht University, Netherlands
  3. Paul Scherrer Institute, Switzerland
  4. The Francis Crick Institute, United Kingdom
  5. Pharmidex 19 Pharmaceuticals, United Kingdom
  6. Mayo Clinic, United States
  7. Institute of Structural and Molecular Biology, Birkbeck College, United Kingdom

Abstract

Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a TPR-containing, right-handed α-solenoid that sequesters the kinesin motor domain’s tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.

Data availability

Cryo-EM electron density maps and models have been deposited in the electron microscopy data bank (EMDB) and protein data bank (PDB) respectively. The relevant deposition codes are provided in Table 1.

The following data sets were generated

Article and author information

Author details

  1. Joseph Atherton

    Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    joseph.atherton@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6362-2347
  2. Jessica JA Hummel

    Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Natacha Olieric

    Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia Locke

    Macromolecular Machines Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alejandro Peña

    Department of In Silico Drug Discovery, Pharmidex 19 Pharmaceuticals, Hatfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven S Rosenfeld

    Department of Cancer Biology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel O Steinmetz

    Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Casper C Hoogenraad

    Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2666-0758
  9. Carolyn A Moores

    Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-6290

Funding

Medical Research Council (MR/R000352/1)

  • Joseph Atherton

Worldwide Cancer Research (16-0037)

  • Julia Locke
  • Alejandro Peña

Wellcome Trust (202679/Z/16/Z,206166/Z/17/Z and 079605/Z/06/Z)

  • Joseph Atherton
  • Julia Locke
  • Alejandro Peña

Biotechnology and Biological Sciences Research Council (BB/L014211/1)

  • Joseph Atherton
  • Julia Locke
  • Alejandro Peña

National Institute of General Medical Sciences (R01GM130556)

  • Steven S Rosenfeld

Swiss National Science Foundation (31003A_166608)

  • Natacha Olieric
  • Michel O Steinmetz

Netherlands Organization for Scientific Research (NWO-ALW-VICI,CCH)

  • Jessica JA Hummel
  • Casper C Hoogenraad

European Research Council (ERC-consolidator,CCH)

  • Jessica JA Hummel
  • Casper C Hoogenraad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,659
    views
  • 450
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. Jessica JA Hummel
  3. Natacha Olieric
  4. Julia Locke
  5. Alejandro Peña
  6. Steven S Rosenfeld
  7. Michel O Steinmetz
  8. Casper C Hoogenraad
  9. Carolyn A Moores
(2020)
The mechanism of kinesin inhibition by kinesin binding protein
eLife 9:e61481.
https://doi.org/10.7554/eLife.61481

Share this article

https://doi.org/10.7554/eLife.61481

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.