The mechanism of kinesin inhibition by kinesin binding protein

  1. Joseph Atherton  Is a corresponding author
  2. Jessica JA Hummel
  3. Natacha Olieric
  4. Julia Locke
  5. Alejandro Peña
  6. Steven S Rosenfeld
  7. Michel O Steinmetz
  8. Casper C Hoogenraad
  9. Carolyn A Moores
  1. King's College London, United Kingdom
  2. Utrecht University, Netherlands
  3. Paul Scherrer Institute, Switzerland
  4. The Francis Crick Institute, United Kingdom
  5. Pharmidex 19 Pharmaceuticals, United Kingdom
  6. Mayo Clinic, United States
  7. Institute of Structural and Molecular Biology, Birkbeck College, United Kingdom

Abstract

Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a TPR-containing, right-handed α-solenoid that sequesters the kinesin motor domain’s tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.

Data availability

Cryo-EM electron density maps and models have been deposited in the electron microscopy data bank (EMDB) and protein data bank (PDB) respectively. The relevant deposition codes are provided in Table 1.

The following data sets were generated

Article and author information

Author details

  1. Joseph Atherton

    Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    joseph.atherton@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6362-2347
  2. Jessica JA Hummel

    Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Natacha Olieric

    Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia Locke

    Macromolecular Machines Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alejandro Peña

    Department of In Silico Drug Discovery, Pharmidex 19 Pharmaceuticals, Hatfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven S Rosenfeld

    Department of Cancer Biology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel O Steinmetz

    Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Casper C Hoogenraad

    Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2666-0758
  9. Carolyn A Moores

    Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-6290

Funding

Medical Research Council (MR/R000352/1)

  • Joseph Atherton

Worldwide Cancer Research (16-0037)

  • Julia Locke
  • Alejandro Peña

Wellcome Trust (202679/Z/16/Z,206166/Z/17/Z and 079605/Z/06/Z)

  • Joseph Atherton
  • Julia Locke
  • Alejandro Peña

Biotechnology and Biological Sciences Research Council (BB/L014211/1)

  • Joseph Atherton
  • Julia Locke
  • Alejandro Peña

National Institute of General Medical Sciences (R01GM130556)

  • Steven S Rosenfeld

Swiss National Science Foundation (31003A_166608)

  • Natacha Olieric
  • Michel O Steinmetz

Netherlands Organization for Scientific Research (NWO-ALW-VICI,CCH)

  • Jessica JA Hummel
  • Casper C Hoogenraad

European Research Council (ERC-consolidator,CCH)

  • Jessica JA Hummel
  • Casper C Hoogenraad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: July 27, 2020
  2. Accepted: November 28, 2020
  3. Accepted Manuscript published: November 30, 2020 (version 1)
  4. Version of Record published: December 17, 2020 (version 2)

Copyright

© 2020, Atherton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,004
    Page views
  • 387
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Atherton
  2. Jessica JA Hummel
  3. Natacha Olieric
  4. Julia Locke
  5. Alejandro Peña
  6. Steven S Rosenfeld
  7. Michel O Steinmetz
  8. Casper C Hoogenraad
  9. Carolyn A Moores
(2020)
The mechanism of kinesin inhibition by kinesin binding protein
eLife 9:e61481.
https://doi.org/10.7554/eLife.61481

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jiyu Xin, Yang Shi ... Xiaoling Xu
    Research Article

    Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Ashton J Curtis, Jian Zhu ... Matthew G Gold
    Research Article Updated

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.