Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants

  1. Adam R Blanden
  2. Xin Yu
  3. Alan J Blayney
  4. Christopher Demas
  5. Jeung-Hoi Ha
  6. Yue Liu
  7. Tracy Withers
  8. Darren R Carpizo  Is a corresponding author
  9. Stewart N Loh  Is a corresponding author
  1. SUNY Upstate Medical University, United States
  2. Rutgers Cancer Institute of New Jersey, United States
  3. University of Rochester Medical Center, United States

Abstract

Missense mutations in the p53 DNA binding domain (DBD) contribute to half of new cancer cases annually. Here we present a thermodynamic model that quantifies and links the major pathways by which mutations inactivate p53. We find that DBD possesses two unusual properties-one of the highest zinc affinities of any eukaryotic protein and extreme instability in the absence of zinc-which are predicted to poise p53 on the cusp of folding/unfolding in the cell, with a major determinant being available zinc concentration. We analyze the 20 most common tumorigenic p53 mutations and find that 80% impair zinc affinity, thermodynamic stability, or both. Biophysical, cell-based, and murine xenograft experiments demonstrate that a synthetic zinc metallochaperone rescues not only mutations that decrease zinc affinity, but also mutations that destabilize DBD without impairing zinc binding. The results suggest that zinc metallochaperones have the capability to treat 120,500 patients annually in the U.S.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Adam R Blanden

    Neurology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Yu

    Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan J Blayney

    Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0741-1550
  4. Christopher Demas

    Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeung-Hoi Ha

    Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yue Liu

    Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tracy Withers

    Surgery, Rutgers Cancer Institute of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Darren R Carpizo

    Surgery, University of Rochester Medical Center, Rochester, United States
    For correspondence
    darren_carpizo@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Stewart N Loh

    Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    For correspondence
    lohs@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4387-9644

Funding

National Institutes of Health (F30 GM113299)

  • Adam R Blanden
  • Stewart N Loh

National Institutes of Health (R01 CA200800)

  • Darren R Carpizo

National Institutes of Health (K08 CA172676)

  • Darren R Carpizo

Breast Cancer Research Foundation

  • Darren R Carpizo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sarel Jacob Fleishman, Weizmann Institute of Science, Israel

Ethics

Animal experimentation: Mice were housed and treated according to guidelines established by the Institutional Animal Care and Use Committee of Rutgers University, who also approved all mouse experiments. (animal protocol PROTO99900044, approval date 10/16/2019 - 10/15/2022).

Version history

  1. Received: July 27, 2020
  2. Accepted: November 19, 2020
  3. Accepted Manuscript published: December 2, 2020 (version 1)
  4. Version of Record published: December 10, 2020 (version 2)

Copyright

© 2020, Blanden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,460
    Page views
  • 569
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam R Blanden
  2. Xin Yu
  3. Alan J Blayney
  4. Christopher Demas
  5. Jeung-Hoi Ha
  6. Yue Liu
  7. Tracy Withers
  8. Darren R Carpizo
  9. Stewart N Loh
(2020)
Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants
eLife 9:e61487.
https://doi.org/10.7554/eLife.61487

Share this article

https://doi.org/10.7554/eLife.61487

Further reading

    1. Cancer Biology
    Wanyoung Lim, Inwoo Hwang ... Sungsu Park
    Research Article

    Chemoresistance is a major cause of treatment failure in many cancers. However, the life cycle of cancer cells as they respond to and survive environmental and therapeutic stress is understudied. In this study, we utilized a microfluidic device to induce the development of doxorubicin-resistant (DOXR) cells from triple negative breast cancer (TNBC) cells within 11 days by generating gradients of DOX and medium. In vivo chemoresistant xenograft models, an unbiased genome-wide transcriptome analysis, and a patient data/tissue analysis all showed that chemoresistance arose from failed epigenetic control of the nuclear protein-1 (NUPR1)/histone deacetylase 11 (HDAC11) axis, and high NUPR1 expression correlated with poor clinical outcomes. These results suggest that the chip can rapidly induce resistant cells that increase tumor heterogeneity and chemoresistance, highlighting the need for further studies on the epigenetic control of the NUPR1/HDAC11 axis in TNBC.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.